
JID:SCICO AID:2145 /SCO [m3G; v1.222; Prn:2/10/2017; 8:28] P.1 (1-7)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Original software publication

ESBMC-GPU
A context-bounded model checking
tool to verify CUDA programs

Felipe R. Monteiro a,∗, Erickson H. da S. Alves a,b, Isabela S. Silva a, 
Hussama I. Ismail a, Lucas C. Cordeiro a,c, Eddie B. de Lima Filho a,d

a Faculty of Technology, Federal University of Amazonas, Brazil
b Samsung Research Institute, Brazil
c Department of Computer Science, University of Oxford, United Kingdom
d TPV Technology Limited, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 February 2017
Received in revised form 17 August 2017
Accepted 13 September 2017
Available online xxxx

Keywords:
GPU verification
Formal verification
Model checking
CUDA

The Compute Unified Device Architecture (CUDA) is a programming model used for 
exploring the advantages of graphics processing unit (GPU) devices, through parallelization 
and specialized functions and features. Nonetheless, as in other development platforms, 
errors may occur, due to traditional software creation processes, which may even 
compromise the execution of an entire system. In order to address such a problem, ESBMC-
GPU was developed, as an extension to the Efficient SMT-Based Context-Bounded Model 
Checker (ESBMC). In summary, ESBMC processes input code through ESBMC-GPU and an 
abstract representation of the standard CUDA libraries, with the goal of checking a set 
of desired properties. Experimental results showed that ESBMC-GPU was able to correctly 
verify 85% of the chosen benchmarks and it also overcame other existing GPU verifiers 
regarding the verification of data-race conditions, array out-of-bounds violations, assertive 
statements, pointer safety, and the use of specific CUDA features.

© 2017 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail address: rms.felipe@gmail.com (F.R. Monteiro).

http://dx.doi.org/10.1016/j.scico.2017.09.005
0167-6423/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2017.09.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:rms.felipe@gmail.com
http://dx.doi.org/10.1016/j.scico.2017.09.005


JID:SCICO AID:2145 /SCO [m3G; v1.222; Prn:2/10/2017; 8:28] P.2 (1-7)

2 F.R. Monteiro et al. / Science of Computer Programming ••• (••••) •••–•••

Software metadata

(Executable) Software metadata description

Current software version 2.0
Permanent link to executables of this version https://esbmc.org/gpu/ScienceofComputerProgramming/SCICO-D-17-00062
Legal Software License Apache v2.0
Computing Operating System Ubuntu Linux OS
Installation requirements & dependencies GNU Libtool; Automake; Flex & Bison; Boost C++ Libraries; Multi-precision 

arithmetic library developers tools (libgmp3-dev package); SSL development 
libraries (libssl-dev package); CLang 3.8; LLDB 3.8; GNU C++ compiler 
(multilib files); libc6 and libc6-dev packages

Link to user manual http://esbmc.org/gpu/ScienceofComputerProgramming/SCICO-D-17-00062
Support email for questions lucas.cordeiro@cs.ox.ac.uk

Code metadata

Code metadata description

Current code version v2.0
Permanent link to code/repository used for this 

code version
https://github.com/ssvlab/esbmc-gpu/ScienceofComputerProgramming/SCICO-
D-17-00062

Legal Code License GNU Public License
Code versioning system used git
Software code languages, tools, and services used C++
Compilation requirements, operating environments 

& dependencies
GNU Libtool; Automake; Flex & Bison; Boost C++ Libraries; Multi-precision 
arithmetic library developers tools (libgmp3-dev package); SSL development 
libraries (libssl-dev package); CLang 3.8; LLDB 3.8; GNU C++ compiler (multi-
lib files); libc6 and libc6-dev packages

Link to developer documentation http://esbmc.org/gpu/ScienceofComputerProgramming/SCICO-D-17-00062
Support email for questions lucas.cordeiro@cs.ox.ac.uk

1. Introduction

The Compute Unified Device Architecture (CUDA) is a development framework that makes use of the architecture and 
processing power of graphics processing units (GPUs) [1]. Indeed, CUDA is also an application programming interface (API), 
through which a GPU’s parallelization scheme and tools can be accessed, with the goal of executing kernels [1]. Nonetheless, 
source code is still written by human programmers, which may result in arithmetic overflow, division by zero, and other 
violation types. In addition, given that CUDA allows parallelization, problems related to the latter can also occur, due to 
thread scheduling [2].

In order to address the mentioned issues, an extension to the Efficient SMT-Based Context-Bounded Model Checker 
(ESBMC) [3] was developed, named as ESBMC-GPU [4–6], with the goal of verifying CUDA-based programs (available online 
at http :/ /esbmc .org /gpu/). ESBMC-GPU consists of an extension for parsing CUDA source code (i.e., a front-end to ESBMC) 
and a CUDA operational model (COM), which is an abstract representation of the standard CUDA libraries (i.e., the native 
API) that conservatively approximates their semantics.

A distinct feature of ESBMC-GPU, when compared with other approaches [2,7–9], is the use of Bounded Model Checking 
(BMC) [10] allied to Satisfiability Modulo Theories (SMT) [11], with explicit state-space exploration [12,3]. In summary, 
concurrency problems are tackled, up to a given loop/recursion unwinding and context bound, while each interleaving 
itself is symbolically handled; however, even with BMC, state-space exploration may become a very time-consuming task, 
which is alleviated through state hashing and Monotonic Partial Order Reduction (MPOR) [13]. As a consequence, redundant 
interleavings are eliminated, without ignoring a program’s behavior.

Finally, existing GPU verifiers often ignore some aspects related to memory leak, data transfer, and overflow, which 
are normally present in CUDA programs. The proposed approach, in turn, explicitly addresses them, through an accurate 
checking procedure, which even considers data exchange between main program and kernel. Obviously, it results in higher 
verification times, but more errors can then be identified and later corrected, in another development cycle.

Existing GPU Verifiers. In addition to ESBMC-GPU, there are other tools able to verify CUDA programs and each one of them 
uses its own approach and targets specific property violations. For instance, GPUVerify [2] is based on synchronous, delayed 
visibility semantics, which focuses on detecting data race and barrier divergence, while reducing kernel verification proce-
dures for the analysis of sequential programs. GPU+KLEE (GKLEE) [8], in turn, is a concrete plus symbolic execution tool, 
which considers both kernels and main functions, while checking deadlocks, memory coalescing, data race, warp divergence, 
and compilation level issues. In addition, Concurrency Intermediate Verification Language (CIVL) [9], a framework for static 
analysis and concurrent program verification, uses abstract syntax tree and partial order reduction to detect user-specified 
assertions, deadlocks, memory leaks, invalid pointer dereference, array out-of-bounds, and division by zero.

In fact, ESBMC-GPU differs from the aforementioned approaches due to its combination of techniques to prune the 
state-space exploration (i.e., two-thread analysis, state hashing, and MPOR) with COM, which demonstrated effectiveness in 

https://esbmc.org/gpu/ScienceofComputerProgramming/SCICO-D-17-00062
http://esbmc.org/gpu/ScienceofComputerProgramming/SCICO-D-17-00062
mailto:lucas.cordeiro@cs.ox.ac.uk
https://github.com/ssvlab/esbmc-gpu/ScienceofComputerProgramming/SCICO-D-17-00062
http://esbmc.org/gpu/ScienceofComputerProgramming/SCICO-D-17-00062
mailto:lucas.cordeiro@cs.ox.ac.uk
http://esbmc.org/gpu/
https://github.com/ssvlab/esbmc-gpu/ScienceofComputerProgramming/SCICO-D-17-00062


Download	English	Version:

https://daneshyari.com/en/article/6875300

Download	Persian	Version:

https://daneshyari.com/article/6875300

Daneshyari.com

https://daneshyari.com/en/article/6875300
https://daneshyari.com/article/6875300
https://daneshyari.com/

