
JID:SCICO AID:2151 /FLA [m3G; v1.224; Prn:19/10/2017; 16:33] P.1 (1-17)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

An experimental comparison of edge, edge-pair, and prime 

path criteria

Vinicius H.S. Durelli a,∗, Marcio E. Delamaro b, Jeff Offutt c

a Department of Computer Science, Federal University of São João del-Rei, São João del-Rei, Minas Gerais, Brazil
b Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, São Paulo, Brazil
c Software Engineering, George Mason University, Fairfax, VA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 March 2016
Received in revised form 5 August 2017
Accepted 6 October 2017
Available online xxxx

Keywords:
Structural testing
Prime path coverage
Edge pair coverage
Mutation testing

Background: Many criteria have been proposed to generate test inputs. Criteria are usually 
compared in terms of subsumption: if a criterion C1 subsumes C2, it is guaranteed that 
every test set that satisfies C1 will also satisfy C2. An implication of this notion of 
subsumption is that C1-adequate tests tend to find more faults than C2-adequate tests, 
but C1-adequate tests tend to be larger. Thus, while useful, the idea of subsumption 
does not elaborate on some practical properties of expensive criteria as, for instance, how 
many more faults a C1-adequate test set will find? More generally, what is the return on 
investment for choosing more expensive criteria?
Method: To provide a more accurate idea of the fault finding ability and cost of several 
criteria, we set out to compare three structural graph coverage criteria: edge coverage (EC), 
edge-pair coverage (EPC), and prime path coverage (PPC). PPC and EPC subsume EC. To 
compare these criteria we examined 189 functions from 39 C programs, used mutants as a 
proxy for faults, and performed a statistical analysis of the results.
Result: The three criteria are very similar in terms of effectiveness when all mutants are 
taken into account: PPC killed 98% of the mutants, EPC 97%, and EC 94%. However, the 
difference between the criteria is emphasized with minimal mutant sets: PPC killed 75% of 
the mutants, EPC killed 67%, and EC killed only 57%. As for the cost of these criteria, we 
found that there is not much difference in terms of the number of TRs. We expected PPC 
to have the most TRs, so we were surprised to find that, on average, the number of TRs for 
EPC was highest.
Conclusion: PPC can detect more faults, specially in programs that have complicated control 
flows, but at higher cost. Thus, a practical tester can make an informed cost versus benefit 
decision. A better understanding of which structures in the programs contribute to the 
expense might help to choose when to use PPC.

© 2017 Published by Elsevier B.V.

1. Introduction

Many software test criteria have been defined, and their use in industry is expanding. Generally, test criteria apply engi-
neering rules to source code or other software artifacts to create test requirements. A test requirement is a specific element 
of a software artifact that a test case must satisfy or cover. For example, the criterion edge coverage creates a test require-

* Corresponding author.
E-mail addresses: durelli@ufsj.edu.br (V.H.S. Durelli), delamaro@icmc.usp.br (M.E. Delamaro), offutt@gmu.edu (J. Offutt).

https://doi.org/10.1016/j.scico.2017.10.003
0167-6423/© 2017 Published by Elsevier B.V.

https://doi.org/10.1016/j.scico.2017.10.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:durelli@ufsj.edu.br
mailto:delamaro@icmc.usp.br
mailto:offutt@gmu.edu
https://doi.org/10.1016/j.scico.2017.10.003


JID:SCICO AID:2151 /FLA [m3G; v1.224; Prn:19/10/2017; 16:33] P.2 (1-17)

2 V.H.S. Durelli et al. / Science of Computer Programming ••• (••••) •••–•••

Fig. 1. Subsumption relationships among structural coverage criteria. (Adapted from Introduction to Software Testing, by Ammann & Offutt, used with permission.)

ment for each edge in a graph. One of the more common bases for defining test criteria on source code is the control flow 
graph (CFG). There, edge coverage requires that each edge in a CFG be covered, that is, each branch must resolve to both 
true and false (hence edge coverage on CFGs is also called branch coverage). Because the CFG summarizes the structure of 
software, these are called structural criteria. Ammann & Offutt’s textbook [1] define ten structural criteria. With this many 
choices, practitioners, educators, and researchers need to know which criterion is best for specific situations.

Test criteria can be compared both theoretically and experimentally. The two most common theoretical comparison 
techniques are subsumption and the number of test requirements. A criterion C1 subsumes another criterion C2 if and only 
if every test set that satisfies C1 is guaranteed to satisfy C2. For example, if a test set takes every branch in a CFG, that 
test set is guaranteed to cover every node, thus edge coverage subsumes node coverage (also called statement coverage). 
Researchers also analyze test criteria to compute theoretical bounds on the number of test requirements. For example, 
edge coverage yields O(E) test requirements, where E is the number of edges in the graph. Although this also bounds the 
number of test cases needed, some tests cover many test requirements so, in practice, the number of tests is often much 
less than the number of test requirements.

The most common two experimental comparison techniques are to count the number of actual test requirements (an 
estimation of cost) and to count the number of faults found by test sets that satisfy the requirements (an estimation of 
effectiveness). Faults for experimental test subjects (programs, classes, or methods) are commonly obtained in three ways. 
One is to use naturally occurring faults. Although intuitively satisfying because finding “real faults” is ultimately what we 
care about, it is often hard to obtain naturally occurring faults, and very hard to obtain them in numbers enough to lend 
any credibility to our experiments. Another method is to manually seed faults. This is also problematic because it is prone 
to human error and bias. The person seeding the faults not only cannot be the same person who designs tests, it is much 
better if the fault seeder does not know the criteria being compared, or even know the purpose of the experiment. A third, 
and the most common in the research literature, is to create pseudo-faults with mutation. Mutation analysis creates many 
versions of the software, each one differing from the original by one small syntactic change. Mutants can be created in great 
numbers and are created systematically, in particular, many types of faults are created. Mutation has also been shown to be 
an excellent proxy for real faults by Andrews et al. [2] and Just et al. [3].

The ten structural criteria defined in Ammann & Offutt’s textbook [1] are shown in Fig. 1, with edges representing 
theoretical subsumption relationships. Although the subsumption relationships are known, the literature offers little in terms 
of experimental comparisons. This paper compares the criteria that are not highlighted in Fig. 1. Complete path coverage 
yields an infinite number of test requirements, so is omitted as being not practical. The two round trip criteria are not 
used in practice, partly because they do not even ensure that all statements (nodes) are covered. Thus, we omit them as 
well. Our current study is limited to the CFG without including additional information that is needed for data flow, so the 
data flow criteria are out of scope for this paper. We omit node coverage (NC) because it is very similar to edge coverage, 
both theoretically and in practice. Thus, this paper compares edge coverage (EC), edge-pair coverage (EPC), and prime path 
coverage (PPC) (these are defined fully in Section 2).

The subsumption relationships among these three criteria are well-known. We also know the bounds on the number of 
test requirements for EC (specifically, O(E), where E is the number of edges). Nobody has yet published the bounds on the 
number of edge-pair requirements. Also not known are the cost and effectiveness tradeoffs among EC , EPC, and PPC. This 
paper reports on an attempt to fill those gaps by supplying theoretical bounds on the number of EPC requirements and 
presenting data from an empirical comparison of the three structural coverage criteria.

We compared the criteria on 189 functions in 39 C programs. As in much of the test criteria literature, we used mutants 
as proxies for faults. We also added one more variable to our experiment by comparing not just the percentage of all 



Download	English	Version:

https://daneshyari.com/en/article/6875302

Download	Persian	Version:

https://daneshyari.com/article/6875302

Daneshyari.com

https://daneshyari.com/en/article/6875302
https://daneshyari.com/article/6875302
https://daneshyari.com/

