
JID:SCICO AID:1719 /FLA [m3G; v 1.131; Prn:28/03/2014; 13:45] P.1 (1-32)

Science of Computer Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A procedure for splitting data-aware processes
and its application to coordination ✩

S.-S.T.Q. Jongmans a,∗, D. Clarke b, J. Proença b

a Centrum Wiskunde & Informatica, Science Park 123, 1098 XG, Amsterdam, Netherlands
b Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium

h i g h l i g h t s

• We present a procedure for splitting algebraic processes with multiactions and data.
• We prove its correctness (strong bisimilarity between original and split processes).
• We apply it to the process algebraic semantics of the coordination language Reo.
• This application justifies an optimization technique for Reo implementations.
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We present a procedure for splitting processes in a process algebra with multiactions and
data (the untimed subset of the specification language mCRL2). This splitting procedure
cuts a process into two processes along a set of actions A: roughly, one of these processes
contains no actions from A, while the other process contains only actions from A. We
state and prove a theorem asserting that the parallel composition of these two processes
is provably equal from a set of axioms (sound and complete with respect to strong
bisimilarity) to the original process under some appropriate notion of synchronization.
We apply our splitting procedure to the process algebraic semantics of the coordination
language Reo: using this procedure and its related theorem, we formally establish the
soundness of splitting Reo connectors along the boundaries of their (a)synchronous regions
in implementations of Reo. Such splitting can significantly improve the performance of
connectors as shown elsewhere.

© 2014 Elsevier B.V. All rights reserved.

1. Motivation

Context Over the past decades, coordination languages have emerged for the specification and implementation of interac-
tion protocols among entities running concurrently (components, services, threads, etc.). This class of languages includes
Reo [2,3], a graphical language for compositional construction of connectors: communication media through which entities
can interact with each other. Fig. 1 shows some example Reo connectors in their usual graphical syntax. Intuitively, connec-
tors consist of one or more channels (i.e., the edges of a connector graph), through which data items flow, and a number of
nodes (i.e., the vertices of a connector graph), on which channel ends (i.e., the endpoints of edges) meet. Through channel
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Fig. 1. Example connectors.

composition—the act of gluing channels together on nodes—engineers can construct complex connectors. Channels often
used include the reliable synchronous channel, called sync, and the reliable asynchronous channel fifon, which has a buffer
of capacity n. Importantly, while nodes have a fixed semantics, Reo features an open-ended set of channels. This allows
engineers to define their own channels with custom semantics.

To use connectors in real applications, one must derive executable code from graphical specifications of connectors (e.g.,
those in Fig. 1). Roughly two implementation approaches currently exist. In the distributed approach [15,45,43,44], one im-
plements the behavior of each of the k constituents of a connector and runs these k implementations concurrently as a
distributed system; in the centralized approach [26,25,30], one computes the behavior of a connector as a whole, implements
this behavior, and runs this implementation sequentially as a centralized system. Which of those two approaches to choose
may depend on the hardware architecture on which to deploy the application. For example, in the case of a service-oriented
choreography application, the distributed approach seems natural, because the services involved run on different machines
and the network between them may play a role in their coordination. However, if coordination involves computation threads
running on the same machine in some multithreading application, the centralized approach appears more appropriate, be-
cause it avoids communication among the constituents of a connector at run-time: in this approach, due to the computation
of the behavior of an entire connector at compile time, one abstracts from the individual, smaller, concurrent constituents
of a connector to obtain one big sequential program for the whole (which can run in its own dedicated thread at run-time,
among the computation threads it coordinates).

One optimization technique applicable to both the distributed and the centralized approaches involves the identification
of the synchronous and the asynchronous regions of a connector [44]. A synchronous region contains exactly those nodes and
channels of a connector that synchronize collectively to decide on their individual behavior; an asynchronous region con-
nects synchronous regions in an asynchronous way, typically involving a fifo1 channel. For instance, the connector consisting
of a sync channel, a fifo1 channel, and another sync channel (see Fig. 1d) has two synchronous regions, connected by an
asynchronous region.

Intuitively, two synchronous regions can run completely independently of each other. Otherwise, by definition, those two
subconnectors do not qualify as separate synchronous regions (instead, they constitute the same synchronous region). In the
distributed approach, this means that nodes and channels need to share information only with those nodes and channels
in the same synchronous region—not with every node or channel in the connector [44]. In the centralized approach, this
means that one does not need to compute the behavior of a connector as a whole, but rather on a per-region basis [25].
Supplementary, asynchronous regions connect synchronous regions to each other by transporting data and control informa-
tion between them. Based on how asynchronous regions do this, one can distinguish different versions of the region-based
optimization technique, with different guarantees and for different use cases. For example, an asynchronous region can
transport control information directly (in which case transportation starts at the same time as the coordination step that
triggered it and ends before the next), atomically (same as the previous case but transportation can start also after the
coordination step that triggered it), or interleaved (same as the previous case but transportation does not need to end be-
fore the next coordination step). Recent work shows that the region-based optimization technique for Reo can significantly
improve performance [15,30,43,44] (both at compile time and at run-time), to the extent that its use will become vital
for real-world applications: without it, automatically deploying (including code generation) and running connectors quickly
becomes infeasible as their size increases.

Problem The region-based optimization technique still has a serious problem: although we have reason to believe (based on
intuition and loose informal reasoning) that it preserves the semantics of a connector, we do not know this for sure by lack
of a formal proof. In fact, in [15], Clarke and Proença identify one implementation of the region-based optimization tech-
nique that produces incorrect behavior for a certain class of connectors. An optimization as important as the region-based
optimization technique for Reo should have a formal proof of correctness. The problem addressed in this paper is that such
a proof currently does not exist.

Contributions of the paper In this paper, using the existing process algebraic semantics of Reo [35,32–34], we prove the
correctness of the region-based optimization technique for asynchronous regions with direct transportation.1 In this seman-
tics, expressed using the specification language mCRL2 [20,22], one associates every connector with a process describing

1 In practice, an implementation of the direct transportation version requires some form of synchronization between the different sides of an asyn-
chronous region. On shared memory architectures, one can implement such synchronization relatively cheaply. On distributed memory architectures with
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