
Science of Computer Programming 101 (2015) 6–20

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Modules and transactions: Building blocks for a theory 

of software engineering ✩

Cengiz Erbas a,∗, Bahar Celikkol Erbas b

a ASELSAN Inc., Ankara, Turkey
b Department of Economics, TOBB University of Economics and Technology, Ankara, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 October 2013
Received in revised form 24 February 2014
Accepted 25 June 2014
Available online 24 November 2014

Keywords:
Transaction costs
Top–down governance
Bottom–up governance
Module decomposition
Module construction

This article leverages the findings of the transaction cost economics field, and proposes a 
simple theory and associated vocabulary to serve as a foundation for a unified theory of 
software engineering. The theory characterizes software engineering as a set of transactions 
organized under a spectrum of three governance structures (top–down, bottom–up and 
reuse), and explains the strengths and weaknesses of these governance structures in 
relation to asset specificity and uncertainty. It takes into account the recursive nature of 
the notions in software engineering, and applies uniformly to various contexts at different 
levels of granularity. It sheds light both on the technical and on the human aspects of 
software engineering through a unified explanatory framework, without requiring a need 
to assemble different approaches to address each. The theory not only explains some of the 
propositions given in the software engineering literature but also reveals the boundaries of 
their applicability.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We have a chicken-and-egg problem in software engineering research. We have neither a common terminology nor a rec-
ognized theory for software engineering. There are numerous fragmented hypotheses regarding one observed phenomenon
or other without having a shared explanatory framework [19]. A unified theory can be built only by means of a common 
terminology; however, a common terminology can emerge only in the presence of a theory [24]. The development of a 
theory and consensus building on terminology will therefore have to happen concurrently.

A unified theory should say something about the choice of “software development methods,” however, this term by itself 
means different things to different individuals. There is no consensus, for example, on what “agile” constitutes. Numerous 
practices are mentioned in the literature for agile development methods and variants. The differences, nevertheless, are 
little understood and substantiated [18]. The problem is not something limited to the agile community, however. We can 
find references which assert that “modular programming” and “structured programming” refer to different methods, as well 
[47]. Other than serving as historical footnotes, it is difficult to judge the significance of such distinctions in practice in the 
absence of predictive and prescriptive support of a unified theory.

✩ This is an extended version of the paper titled “On a Theory of Software Engineering: A Proposal Based on Transaction Cost Economics”, which was 
published at the 2nd SEMAT Workshop on a General Theory of Software Engineering (GTSE 2013), San Francisco, California, May 18–26, 2013, pp. 15–18, 
IEEE Conference Publications, http://dx.doi.org/10.1109/GTSE.2013.6613864.

* Corresponding author.
E-mail address: cerbas@aselsan.com.tr (C. Erbas).

http://dx.doi.org/10.1016/j.scico.2014.11.006
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.11.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://dx.doi.org/10.1109/GTSE.2013.6613864
mailto:cerbas@aselsan.com.tr
http://dx.doi.org/10.1016/j.scico.2014.11.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.11.006&domain=pdf


C. Erbas, B.C. Erbas / Science of Computer Programming 101 (2015) 6–20 7

A unified theory should not only be empirically testable but should provide good explanations for software engineering 
phenomena at multiple levels, including human aspects and technical artifacts [21]. It should go beyond displaying statistical 
relationships among bunch of variables, and should explain observations by linking with the existing scientific knowledge. 
Good explanations are often strikingly simple, elegant and hard to vary. They do not contain superfluous features or arbi-
trariness, and cannot be altered without changing their predictions [38].

The task of developing a unified theory could probably be easier, if we begin with the micro-foundations of software 
engineering. The success of a software development method for a given project is a function of many variables, a few of 
which are somewhat intricate. Rather than trying to explain the aggregate behavior of a set of complex variables, we can 
initially try to identify basic “units of analysis” and formalize their relationships to serve as a foundation for further theory 
development. If we can reach a consensus for a firm foundation, then it could be less complicated to build on.

It is also important to keep terminological consistency with other established scientific fields. Physicists and chemists, 
for example, use the same term “electron” to refer to the same phenomena. A chemist and a biologist can agree quite 
easily about the meaning of “protein.” “Synapse” means the same thing to a biologist, a neuroscientist, and a physician. We 
should try to achieve similar consistency across relevant disciplines. Ensuring such consistency not only facilitates consensus 
building within the software engineering community but also enables us to leverage the existing findings of these other 
related disciplines in theory formation.

In this article, we make one such attempt. We demonstrate the relationship of software engineering with another estab-
lished discipline, microeconomics, and propose a simple theory of software decomposition, construction and reuse. Relying on 
“modules” and “transactions” as the units of analysis, we leverage a few concepts, such as transaction costs, asset specificity 
and governance structures from microeconomics; introduce new ones, such as bottom up governance and top–down gov-
ernance; and propose a theory which sheds light both on the technical and on the human aspects of software engineering 
through a unified explanatory framework. We consider the proposed theory, however, not as a unified theory of software 
engineering per se, but as a building block towards one. The theory places a central role to the way software development 
is governed (top–down or bottom–up) when seeking explanations to the observed phenomena in the field. The proposed 
theory is capable of not only explaining some of the propositions given in the software engineering literature, such as 
Parnas [35], Brooks [7], and Boehm and Turner [6], but also disclosing the limits of their applicability.

Seeking the foundation of software engineering in the economics discipline may appear counter intuitive. We argue the 
contrary. It is relevant not only because economical considerations, such as cost, value and productivity are important for 
software engineering, but more importantly, because the best software designs are quite frequently the most economical 
ones. It is not the complexity, but the simplicity of the design of UNIX operating system which makes it remarkable [45]. 
We argue that this relationship between “good” design and “economical” design is deeper than it may first seem. Through 
this relationship, we will show that economics may lay the common ground between the technical and the human aspects 
of software engineering.

The paper is organized as follows: Section 2 presents a review of the related work, specifically in relation to the appli-
cations of transaction cost economics in software engineering. Section 3 reviews the underlying assumptions of a spectrum 
of microeconomic theories, and argues that transaction-cost economics best represents the dynamics of software engineer-
ing. Section 4 introduces “modules” and “transactions” as the basic units of analysis for software engineering. Section 5
illustrates the concepts of asset specificity and uncertainty in software engineering through examples, and proposes three 
governance structures, namely reuse, top–down and bottom–up, as a foundation for a unified theory. Section 6 broadens 
the analysis from the level of modules to the level of module hierarchy, and analyzes the strength and the weaknesses of 
different development methods, from waterfall to agile, through this unified view. Section 7 demonstrates that proposed 
theory successfully explains many propositions cited in the literature. Section 8 concludes the paper.

2. Related work

Scientific disciplines arise on theoretical foundations; and software engineering is no exception. Even though the software 
engineering discipline has not yet succeeded to build one, the search for a unified theory was there, now and then, since the 
initial days of the discipline. We may recall the efforts of Halstead [14] as one early example to build a quantitative basis for 
a software science. The interest to build theoretical foundations to software engineering has been revitalized recently by the 
Software Engineering Method and Theory (SEMAT) initiative [20,17]. Among the papers presented in SEMAT workshops, two 
are particularly relevant from the perspective of this article, mainly because they make comparable predictions for certain 
phenomena associated with software development methods.

The first paper [39] proposed formulating a multi-level approach, and reviewed five theories that may explain soft-
ware engineering phenomena at different levels, including individual (cognitive biases), team (transactive memory), artifact 
(boundary objects), process (sensemaking-coevolution-implementation) and project (complexity theory). The paper asserted 
that these theories provide consistent explanations and can be used in parallel to grasp the same software engineering 
phenomena. The second paper [42] framed development practices as organizational practices, and separated two conflicting 
approaches, namely, technical rationality, which views software development as a methodical and plan-centered process 
of building an artifact for a given set of requirements, and reflection-in-action, which views software development as an 
evolving and improvisational process of simultaneously understanding the problem and building the artifact. The paper ar-



Download English Version:

https://daneshyari.com/en/article/6875336

Download Persian Version:

https://daneshyari.com/article/6875336

Daneshyari.com

https://daneshyari.com/en/article/6875336
https://daneshyari.com/article/6875336
https://daneshyari.com

