
Science of Computer Programming 80 (2014) 416–439

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Formal semantics, modular specification, and symbolic
verification of product-line behaviour ✩

Andreas Classen a, Maxime Cordy a,∗,1, Patrick Heymans a,b, Axel Legay c,
Pierre-Yves Schobbens a

a PReCISE Research Center, University of Namur, Belgium
b INRIA Lille-Nord Europe, Université Lille 1 – LIFL – CNRS, France
c INRIA Rennes, France

h i g h l i g h t s

• We use Featured Transition Systems (FTS) to model Software Product Lines (SPLs).
• We design symbolic algorithms for checking an FTS against temporal properties.
• We give a new compositional formal semantics to the fSMV language.
• We prove the expressiveness equivalence between fSMV and FTS.
• We evaluate practical implications of our results through our toolset and case study.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 May 2012
Received in revised form 22 August 2013
Accepted 18 September 2013
Available online 22 October 2013

Keywords:
Software product line
Verification
Feature
Language
Specification

Formal techniques for specifying and verifying Software Product Lines (SPL) are actively
studied. While the foundations of this domain recently made significant progress with the
introduction of Featured Transition Systems (FTSs) and associated algorithms, SPL model
checking still faces the well-known state explosion problem. Moreover, there is a need
for high-level specification languages usable in industry. We address the state explosion
problem by applying the principles of symbolic model checking to FTS-based verification
of SPLs. In order to specify properties on specific products only, we extend the temporal
logic CTL with feature quantifiers. Next, we show how SPL behaviour can be specified with
fSMV, a variant of SMV, the specification language of the industry-strength model checker
NuSMV. fSMV is a feature-oriented extension of SMV originally introduced by Plath and
Ryan. We prove that fSMV and FTSs are expressively equivalent. Finally, we connect these
results to a NuSMV extension we developed for verifying SPLs against CTL properties.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Software Product Lines (SPLs) are a popular software engineering paradigm that seeks to maximise reuse by planning
upfront which features should be common, resp. variable, for several similar software systems [17]. The different systems
in an SPL (called “products”) are identified in advance and a model of their differences and commonalities is created. This
model is usually a feature diagram [29,39], features being atomic units of difference that appear natural to stakeholders and

✩ This article is an extended version of the paper A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, Symbolic model checking of software product lines, in:
Proceedings of ICSE ’11, ACM, 2011, pp. 321–330.

* Corresponding author.
E-mail addresses: acs@info.fundp.ac.be (A. Classen), mcr@info.fundp.ac.be (M. Cordy), phe@info.fundp.ac.be (P. Heymans), axel.legay@inria.fr (A. Legay),

pys@info.fundp.ac.be (P.-Y. Schobbens).
1 FNRS research fellow, project FC 91490.

0167-6423/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.09.019

http://dx.doi.org/10.1016/j.scico.2013.09.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:acs@info.fundp.ac.be
mailto:mcr@info.fundp.ac.be
mailto:phe@info.fundp.ac.be
mailto:axel.legay@inria.fr
mailto:pys@info.fundp.ac.be
http://dx.doi.org/10.1016/j.scico.2013.09.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.09.019&domain=pdf


A. Classen et al. / Science of Computer Programming 80 (2014) 416–439 417

Fig. 1. The feature diagram of a vending machine.

technicians alike [13]. A toy example of a feature diagram is given in Fig. 1. It models a vending machine SPL with five
features. Feature Beverages is mandatory, while FreeDrinks and CancelPurchase are optional. Soda and Tea are subfeatures of
Beverages, and any product must have at least one of them.

In the real world, SPL development is increasingly applied to embedded and critical systems [21]. Formal modelling
and verification of SPL behaviour are thus vital for quality assurance and are actively studied [24,31,32,15]. Model checking
is a well-known automatic technique for verifying both hardware and software. It allows to verify desired behavioural
properties on a model of a given system [4]. For example, an intended property for the vending machine is: “A customer
can always cancel a purchase before the beverage is served”. In the context of single systems, a model checker returns
true if a property is satisfied, or a counter-example (i.e. an execution trace) if it is violated. The model checking problem
in SPL is different from the one in single systems engineering: an algorithm has to check all products against a property
and pinpoint those products that violate it [16]. In our example, every vending machine without the Cancel feature would
not satisfy the aforementioned property. The model checking problem is also harder, as it has to deal with the fact that
there can be exponentially many, O(2#features), products to verify. In [15,9], we addressed the model checking problem for
SPLs by introducing Featured Transition Systems (FTSs), a formalism to express the behaviour of all products of the SPL in one
model. FTSs are transition systems [4] in which transitions are labelled with features (in addition to being labelled with
actions). This allows one to keep track of the different products. We also proposed new model checking algorithms [15] that
exploit the structure of the FTS and try to avoid an exponential number of verifications by exploring the FTS rather than
the transition system of each individual product. Those algorithms can be used to verify properties expressed in Linear Time
Logic (LTL). We call them FTS algorithms. The experimental results gathered so far show that this new approach is more
efficient than an enumerative method that verifies each product individually. More information can be found on our project
website http://www.info.fundp.ac.be/fts.

The main drawback of our previous FTS algorithms is that they rely on an explicit enumeration of the state space. Albeit
we already observed that FTSs drastically reduce the time needed to verify the products of an SPL, they may still suffer
from the state explosion problem. Overcoming this issue is a well-known challenge in explicit state space model checking.
Symbolic algorithms, which make use of symbolic representations of the state space, are a solution to this problem. They
have shown to be particularly efficient in the context of single-systems model checking and made possible the verification
of huge systems [34].

Moreover, FTSs is a foundational formalism, not meant to be used directly by engineers. It is thus important to relate
the FTS language to high-level languages that can be used in industrial settings. A suitable language for SPLs is fSMV,
which was introduced by Plath and Ryan [36]. fSMV extends SMV (i.e. the (Nu)SMV model checker’s input language) with
primitives that allow to account for the addition of new features. More precisely, in fSMV, an SPL is represented by a
base system described in the SMV language. Each additional feature is described independently, stating its assumptions and
modifications. A product is built from the base system by adding features in a certain order.

In [36], Plath and Ryan propose a procedure to verify properties of a product. The verification procedure exploits the
fact that a product can be expressed with SMV alone, and hence semantically as a transition system. This property allows
them to reuse the classical symbolic verification procedure implemented in the (Nu)SMV toolset, which provides an efficient
way to verify a single product. An fSMV model represents several products, each being the combination of the base system
and a set of features. However, with the approach described in [36], one check per product is needed, which decreases the
performance of the approach considerably. This is because transition systems do not allow to distinguish between features
and hence between products. There is thus a need for a translation from fSMV to a formal model that is more suited to
represent SPLs.

The contribution of the present paper is twofold. First, we propose symbolic algorithms for model checking an FTS
against temporal properties. Second, we study the relation between FTSs and fSMV and provide them with a bi-directional
translation. For this purpose, we provide the fSMV language with a definition different from the one given by Plath and
Ryan [36]. The formal definition of fSMV is different from the one of SMV as we now have to characterise features and
feature composition. Then, we show that FTSs and fSMV are equally expressive, that is, any FTS can be translated into an
equivalent (in terms of behaviour) fSMV model and vice versa. This proof provides evidence that fSMV is an appropriate
notation to model SPL behaviour. It is also a reference against which implementations can be proven correct, which is
necessary to obtain trustworthy verification tools. Finally, we exploit this result to extend the NuSMV model checker with

http://www.info.fundp.ac.be/fts


Download English Version:

https://daneshyari.com/en/article/6875378

Download Persian Version:

https://daneshyari.com/article/6875378

Daneshyari.com

https://daneshyari.com/en/article/6875378
https://daneshyari.com/article/6875378
https://daneshyari.com

