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express GADT declarations using Generics, but only some GADT programs. The addition
of equational constraints on type parameters recovers expressivity. We now study this
expressivity gap in more depth by extending an earlier translation from System F to C*
Keywords: to handle GADTs. Our efforts reveal some surprising limitations of Generics and provide
Generalized algebraic data types further justification for equational constraints.

Generics © 2018 Elsevier B.V. All rights reserved.
Polymorphism

System F

C#

Dear Don, if papers were printed on vinyl, this would be the B-side of [4]. Underappreciated by critics, it remains a personal favorite.
So what'’s the connection? You introduced me to the wonderful world of Type Theory and Standard ML which led to my first proper job
working with Andrew Kennedy on an SML compiler. You encouraged me to look at System F which we used to crack SML Modules and
which reappears in this paper to shed some light on object-oriented Generics. It may not be what you wished for but Happy Birthday!
— Claudio

1. Introduction

Functional programming languages such as Haskell and ML have long supported user-defined datatypes. A datatype dec-
laration simultaneously defines a named type, parameterized by other types, and the means of constructing values of that
type. For example, here is a Haskell datatype of binary trees parameterized on the type d of data and type k of keys stored
in the nodes:

dataTreekd = Leaf | Nodekd (Treekd) (Tree k d)

This defines two polymorphic value constructors Leaf and Node with types:
Leaf :: Treekd, Node :: k — d — Treekd — Treekd — Treekd.

Notice how both term constructors have the fully generic result type Treekd; there is no specialization of the type
parameters to Tree. Conversely, any value of type Treeto, for some concrete T and o, can either be a leaf or a node —
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the static type does not reveal which. Observe that all recursive uses of the datatype within its definition are Treekd: this
makes Tree a regular datatype.

The restrictions on parameterized algebraic datatypes (PADTs) can be relaxed in three ways, yielding generalized algebraic
datatypes (GADTSs):

1. The restriction that constructors all return ‘generic’ instances of the datatype can be removed. This feature defines
GADTs.

2. The regularity restriction can be removed, permitting datatypes to be used at different instantiations within their own
definition. Writing useful functions over such types requires polymorphic recursion: the ability to use a polymorphic
function at different types within its own definition. C?, Java and Haskell allow this, ML does not.

3. A constructor can be allowed to mention additional type variables that may appear in its argument types but do not
appear in its result type. These type arguments are hidden by the type of the constructed term and thus existentially
quantified.

Most useful examples of GADTs make use of all three abilities. Consider the following type Expt representing abstract
syntax for expressions of type t, written in Haskell with GADTs [10,11]:

data Exp t where
Lit :: Int — ExpInt
Plus :: ExpInt — ExpInt — Exp Int
Equals :: Exp Int — Exp Int — Exp Bool
Cond :: Exp Bool — Expa — Expa — Expa
Tuple :: Expa — Expb — Exp (a,b)
Fst :: Exp (a,b) — Expa

All constructors except for Cond make use of feature (1), as their result types refine the type arguments of Exp: for
example, Lit has result type ExplInt. All constructors except for Lit make use of feature (2), using the datatype at different
instantiations in arguments to the constructor. Finally, Fst uses a hidden type b, thus making use of feature (3).

Why is this interesting? Consider this evaluator for expressions, defined by case analysis on values of type Expt (note
that ‘—* begins a Haskell comment):

eval :: Expt — t
evale = caseeof Liti - i —t=Int

Plusele2 — evalel + evale2 —t=Int
Equalsel e2 — evalel == evale2 — t= Bool
Condele2e3 - —t=a

if eval e1 then eval e2 else eval e3
Tupleel e2 — (evalel, evale2) —t=(a,b)
Fste — fst(evale) —t=a

The fascinating thing about eval is that the compiler doesn’t reject it. Observe closely: some branches of the case ex-
pression return computations of different types. The Lit branch returns an integer, the Equals branch returns a boolean, the
Tuple branch returns a pair. In the ML type system, all the continuations of a case expression are required to have the same
type and one would expect eval to be rejected as type-incorrect. In GADT Haskell, this requirement is subtly relaxed: each
branch must, instead, merely have an appropriate type, given the type of its pattern and the type of the scrutinee.

Although probably unintentional, both C* and Java Generics already support GADTs. Consider the C* code in Fig. 1. This is
a straightforward encoding of the GADT Haskell datatype Expt. Abstract syntax trees are represented using an abstract class
of expressions, with a concrete subclass for each node type. The interpreter is implemented by an abstract Eval method
in the expression class, overridden for each node type. Indeed, this is a subtle variant of the Interpreter design pattern.
Observe how the type parameter of Exp is refined in subclasses; moreover, this refinement is reflected in the signature
and code of the overridden Eval methods. For example, Plus.Eval has result type int and requires no runtime casts
in its calls to el.Eval () and e2.Eval (). Not only is this a clever use of static typing, it is also more efficient than a
dynamically-typed version, particularly in an implementation that performs code specialization to avoid boxing [5].

Just like our Haskell datatype, these C* classes make use of all three features that characterize GADTs. Feature (1) is
expressed by defining a subclass of a generic type that does not just propagate its type parameters through to the superclass.
(P1lus is a non-generic class that extends the particular instantiation Exp<int>.) Feature (2) corresponds to the existence
of fields in the subclass whose types are unrelated instantiations of the generic type of the superclass. (Tuple<A, B> has a
field of type Exp<A> but superclass Exp<Pair<Aa, B».) Feature (3) corresponds to the declaration of type parameters on
the subclass that are not referenced in the superclass. (Fst<a, B>'s superclass Exp<A> hides B.)
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