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A refinement is a predicate on the elements of a type that describes their execution 
behavior. Much work has gone into developing refinements in a closed world, in which the 
classes of values of a type are fixed statically, as in the case of the natural numbers with
zero and succ. Relatively little work has gone into developing refinements in an open 
world in which new classes may be added dynamically. Here we examine the problem of 
exception tracking, a perennially problematic typing concept for programming languages, 
from the point of view of refinements in an open world. Exceptions are decomposed 
into separate control and data mechanisms, the latter motivating the need for open-world 
refinements. Exception tracking is thereby repositioned as a matter of program verification, 
rather than structural typing, integrating behavioral typing with theorem proving even 
in an open world. Some further applications of dynamic classification and open-world 
refinements are suggested.

© 2018 Published by Elsevier B.V.

1. Introduction

Don Sannella devoted much of his career to formal program development [1]. Much of his work emphasized equational 
reasoning, which is of fundamental importance. Don was also a contributor to the design of Standard ML [2], which 
included a notably powerful exception mechanism. Here we develop a logic for exception tracking in an ML-like setting 
using a relational program logic called type refinement. In the basic form considered here type refinements are prop-
erties of program behavior, but more general forms are binary relations specifying behavioral equality, a natural link to 
Don’s work.

Structural type systems determine the grammar and dynamics of a language. Typing is expected to be decidable, and the 
dynamics is expected to be safe [3]. Behavioral type systems specify how a well-formed program behaves when executed. 
Typing cannot be expected to be decidable (except by being economical with the truth), but must be proved by a combi-
nation of human and mechanical reasoning. Structural typing is most closely related to proof theory [4], and the syntactic 
propositions-as-types principle [5]; behavioral typing is most closely related to realizability theory [6], and the semantic 
propositions-as-types principle [7,8].

Type refinements [9,10] were developed as a form of behavioral type system for functional programs. A type refinement 
is an inductively defined predicate over a type, making use of the action of type constructors on them and of logical 
concepts such as intersection, union, and entailment. Consider the following example in which a type of natural numbers 
(represented in unary) is defined, a function inc is defined over them, and two refinements (aka sorts), even and odd, 
are defined on nat that may be used to characterize the behavior of inc.
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datatype nat = Zero | Succ of nat
datasort even = Zero | Succ of odd
and odd = Succ of even
fun inc Zero = Succ Zero

| inc ( Succ n) = Succ ( inc n)

In the presence of such declarations, the function inc satisfies the refinement (even → odd) ∧ (odd → even) in the 
sense that it truly does carry even’s to odd’s and odd’s to even’s. The stated property is an example of a refinement that 
makes use of the predicate action of the function space, and of the intersection of two refinements. The assertion may 
be proved by a straightforward inductive argument that is readily mechanized, but in general such properties can encode 
uncomputable or unsolved problems, and hence cannot be expected to be checked by purely mechanical means. Yet much 
emphasis has been placed on inductive definitions of the formal provability of refinement satisfaction, e ∈τ φ, where e : τ , 
and φ refines τ , rather than on building a framework in which one may prove that such judgments are true. For example, 
the judgment e ∈nat even is true iff either e evaluates to zero or to succ(e′) and e′ ∈nat odd true, and similarly for 
e ∈nat odd. Scaling up, e ∈τ1→τ2 φ1 → φ2 iff whenever e1 ∈τ1 φ1 holds, then e(e1) ∈τ2 φ2 holds as well.

Logical connectives, such as conjunction/truth and disjunction/falsehood are managed by entailment between refinements. 
The preorder φ ≤τ ψ between refinements of a type τ states that every value of type τ satisfying φ also satisfies ψ . This 
ordering is a lattice, which means that has finite meets and joins—the mentioned conjunctions and disjunctions needed for 
specification. Negation is a more delicate matter, raising the distinction between closed- and open-world type refinements. 
Refinements of a type such as nat are closed-world, because its only constructors are Zero and Succ. Consequently, we 
may reason that if a value of type nat is not Zero, then it must be Succ of something, and vice-versa. Negation in a 
closed world behaves classically in the sense that we have complete knowledge of what is and is not the case.

In an open world we cannot reason based solely on what we know now, but we must instead account for possible 
futures, much in the manner of intuitionistic logic. The locus classicus of such a situation arises with exception tracking of 
the kind found in languages such as CLU [11] in the ‘70’s, FX [12] in the ‘80’s, and Java [13] in the ‘90’s. Exception names 
are analogous to constructors such as Zero and Succ, but there is no limit to the possible forms of exception that may be 
raised at a given program point, even ones that are not in scope. Higher-order features, such as functions and objects, give 
rise to such behavior. Moreover, in the interest of modularity and extensibility, exceptions are often dynamically generated, 
and hence cannot be named statically.

Negation plays an important role in exception-tracking. Standard accounts, such as those mentioned above, emphasize 
“positive” information—which exceptions may be raised—to the exclusion of “negative” information—which exceptions can-
not be raised. But the negative information is just as important, if not more so. In a closed world the positive information 
determines, by implication, the negative information. But in an open world one must account for extensions, and the rea-
soning is not so simple.

Consider the following example:

l e t
exception X

in
r a i s e X

end

The expression raise X raises the exception X, as does the entire expression. With positive exception tracking, we may 
assert within the scope of X that raise X does indeed raise X. But upon exiting the scope of the declaration, the exception
X is still raised, but it cannot be named and hence cannot be specified in a positive tracking regimen. This renders positive 
information unsound in that an exception may be raised by an expression that is not (because it cannot) be specified in a 
type refinement. Note well that this discrepancy is not a matter of being conservative. It would be conservative to specify 
more exceptions than can actually be raised, but it is unsound to not specify an exception that can.

One consequence is that it is equally important to track both positive and negative information about exceptions. In a 
closed world a predicate and its negation are complementary, and so one determines the other. In an open world this is no 
longer the case. It becomes important, then, to track negative information—which exceptions cannot be raised—as much as 
positive—those that can be raised.

Consider the following example:

l e t
exception X

in
2+2

end

The body of the declaration cannot raise the exception X, and neither can the declaration as a whole. With the scope of X
we may specify that X cannot be raised by an expression such as the addition in the above example. But this specification 
cannot be propagated beyond the scope of the declaration of X. But neglecting to mention it affects only precision, not soundness.
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