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The MaxSTC problem is an assignment of the edges with two types of labels, namely, 
strong and weak, that maximizes the number of strong edges such that any two vertices 
that have a common neighbor with a strong edge are adjacent. The Cluster Deletion

problem seeks for the minimum number of edge removals of a given graph such that 
the remaining graph is a disjoint union of cliques. Both problems are known to be NP-hard 
and an optimal solution for the Cluster Deletion problem provides a feasible solution for 
the MaxSTC problem, however not necessarily an optimal one. In this work we conduct 
the first systematic study that reveals graph families for which the optimal solutions for
MaxSTC and Cluster Deletion coincide. We first show that MaxSTC coincides with Cluster 
Deletion on cographs and, thus, MaxSTC is solvable in polynomial time on cographs. 
As a side result, we give an interesting computational characterization of the maximum 
independent set on the cartesian product of two cographs. Furthermore, we address 
the influence of the low degree bounds to the complexity of the MaxSTC problem. We 
show that this problem is polynomial-time solvable on graphs of maximum degree three, 
whereas MaxSTC becomes NP-complete on graphs of maximum degree four. The proof of 
the latter result implies that there is no subexponential-time algorithm for MaxSTC unless 
the Exponential-Time Hypothesis fails.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The principle of strong triadic closure is an important concept in social networks [7]. It states that it is not possible for 
two individuals to have a strong relationship with a common friend and not know each other [10]. The strong triadic closure 
is satisfied if the edges of the underlying graph are characterized into weak and strong such that any two vertices that have 
a strong neighbor in common are adjacent. Towards the investigation of the behavior of a network, such a principle has 
been recently proposed as a maximization problem, called MaxSTC, in which the goal is to assign each edge as strong 
or weak so that to maximize the number of strong edges of the underlying graph that satisfy the strong triadic closure 
[22]. Closely related to the MaxSTC problem is the Cluster Deletion problem which finds important applications in areas 
involving clustering [1]. In the latter problem the goal is to remove the minimum number of edges such that the resulting 
graph consists of vertex-disjoint union of cliques.
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Fig. 1. Two examples of graphs with their corresponding optimal solutions for Cluster Deletion and MaxSTC, respectively. For the MaxSTC problem the 
edges of G that are not drawn in the solution correspond to the weak edges.

The relation between MaxSTC and Cluster Deletion arises from the fact that the edges inside the cliques in the resulting 
graph for Cluster Deletion can be seen as strong edges for MaxSTC which satisfy the strong triadic closure. Thus, the 
number of edges in an optimal solution for Cluster Deletion consists a lower bound for the number of strong edges in an 
optimal solution for MaxSTC. However there are graphs (see for e.g., Fig. 1) showing that an optimal solution for MaxSTC

contains larger number of edges than an optimal solution for Cluster Deletion. Interestingly, there are also families of 
graphs in which their optimal value for MaxSTC matches such a lower bound. For instance, any maximum matching on 
graphs that do not contain triangles constitutes a solution for both problems. Here we initiate a systematic study on other 
non-trivial classes of graphs for which the optimal solutions for both problems have exactly the same value.

Our main motivation is to further explore the complexity of the MaxSTC problem when restricted to graph classes. As
MaxSTC has been recently introduced, there are few results concerning its complexity. The problem has been shown to be 
NP-complete for general graphs [22] and split graphs [17] whereas it becomes polynomial-time tractable on proper interval 
graphs and trivially perfect graphs [17]. The NP-completeness on split graphs shows an interesting algorithmic difference 
between the two problems, since Cluster Deletion on such graphs can be solved in polynomial time [2]. It is known that
Cluster Deletion is NP-complete on general graphs [21] and remains NP-complete on chordal graphs and, also, on graphs of 
maximum degree four [2,15]. On the positive side Cluster Deletion admits polynomial-time algorithms on proper interval 
graphs [2], graphs of maximum degree three [15], and cographs [9]. In fact for cographs a greedy algorithm that finds 
iteratively maximum cliques gives an optimal solution, although no running time was explicitly given in [9].

Such a greedily approach is also proposed for computing a maximal independent set of the cartesian product of general 
graphs. Summing the partial products between iteratively maximum independent sets consists a lower bound for the car-
dinality of the maximum independent set of the cartesian product [13,14]. Here we prove that a maximum independent 
set of the cartesian product of two cographs matches such a lower bound. We would like to note that a polynomial-time 
algorithm for computing such a maximum independent set is already claimed [11]. However neither a characterization is 
given, nor an explicit running time of the algorithm is reported.

Our results. In this work we further explore the complexity of the MaxSTC problem. We consider two unrelated fami-
lies of graphs, namely, cographs and graphs of bounded degree. Cographs are characterized by the absence of a chordless 
path on four vertices. For such graphs we prove that the optimal value for MaxSTC matches the optimal value for Cluster 
Deletion. For doing so, we reveal an interesting vertex partitioning with respect to their maximum clique and maximum 
independent set. This result enables us to give an O (n2)-time algorithm for MaxSTC on cographs. As a byproduct we char-
acterize a maximum independent set of the cartesian product of two cographs which implies a polynomial-time algorithm 
for computing such a maximum independent set. Moreover we study the influence of low maximum degree for the MaxSTC

problem. We show an interesting complexity dichotomy result: for graphs of maximum degree four MaxSTC remains NP-
complete, whereas for graphs of maximum degree three the problem is solved in polynomial time. Our reduction for the 
NP-completeness on graphs of maximum degree four implies that, under the Exponential-Time Hypothesis, there is no 
subexponential time algorithm for MaxSTC. A preliminary version of this work appeared as an extended abstract in the 
proceedings of COCOON 2017 [16].

2. Preliminaries

All graphs considered here are simple and undirected. A graph is denoted by G = (V , E) with vertex set V and edge 
set E . We use the convention that n = |V | and m = |E|. The neighborhood of a vertex v of G is N(v) = {x | vx ∈ E} and 
the closed neighborhood of v is N[v] = N(v) ∪ {v}. The degree of v is d(v) = |N(v)|. For S ⊆ V , N(S) = ⋃

v∈S N(v) \ S and 
N[S] = N(S) ∪ S . A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For X ⊆ V (G), the subgraph of G induced
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