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A graph is said to be of class 1 if its edge chromatic number is equal to the maximum 
degree of this graph. Let G be a planar graph with maximum degree � ≥ 6 and without 
adjacent 7-cycles, then G is of class 1.
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1. Introduction

All graphs considered here are finite, simple and undirected. Let G be a graph with the vertex set V (G) and edge 
set E(G). We denote the maximum degree of G by �(G). For vertices u, v, w ∈ V (G), let EG(u) or E(u) be the set of 
edges incident with u, N(u) the set of vertices adjacent to u, and N(u, v) = N(u) 

⋃
N(v), N(N(u)) = {w|v w ∈ E, v ∈

N(u)}, N(N(u, v)) = N(N(u)) 
⋃

N(N(v)). The degree of v in G , denoted by dG (v) or d(v), is the cardinality of E(v). 
A k-vertex, k−-vertex or a k+-vertex is a vertex of degree k, at most k or at least k, respectively. A k (or k+)-vertex ad-
jacent to a vertex x is called a k (or k+)-neighbor of x. A k-cycle is a cycle of length k. Two cycles sharing at least a 
common edge are said to be adjacent.

A graph is k-edge-colorable, if its edges can be colored with k colors such that adjacent edges receive different colors. The 
edge chromatic number of a graph G , denoted by χ ′(G), is the smallest integer k such that G is k-edge-colorable. In 1964, 
Vizing showed that if G is a graph with maximum degree �, then �(G) ≤ χ ′(G) ≤ �(G) +1. A graph G is said to be of class
1 if χ ′(G) = �, and of class 2 if χ ′(G) = � + 1. A graph G is critical if it is connected and of class 2, and χ ′(G − e) < χ ′(G)

for any edge e of G . A critical graph with maximum degree � is called a �-critical graph. It is clear that every critical graph 
is 2-connected.

A planar graph is a graph which can be embedded in the plane in such a way that no two edges intersect geometrically 
except at a vertex to which they are both incident. If a connected graph G is embedded in the plane in this way, it is called 
a plane graph. For planar graphs, more is known. As noted by Vizing [1], if C4, K4, the octahedron, and the icosahedron 
have one edge subdivided each, class 2 planar graphs are produced for � ∈ {2, 3, 4, 5}. He proved that every planar graph 
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with � ≥ 8 is of class 1 (There are more general results, see [2] and [4]) and then conjectured that every planar graph with 
maximum degree 6 or 7 is of class 1. The case � = 7 for the conjecture has been verified by Zhang [7] and, independently, 
by Sanders and Zhao [6]. The case � = 6 remains open, but some partial results are obtained. Theorem 16.3 [1] stated that 
a planar graph with the maximum degree � and the girth g is of class 1 if � ≥ 3 and g ≥ 8, or � ≥ 4 and g ≥ 5, or � ≥ 5
and g ≥ 4. Lam, Liu, Shiu and Wu [3] proved that a planar graph G is of class 1 if � ≥ 6 and no two 3-cycles of G sharing a 
common vertex. Zhou [8] obtained that every planar graph with � ≥ 6 and without 4 or 5-cycles is of class 1. Ni [5] proved 
that a planar graph G is of class 1 if � ≥ 6 and any two k-cycles of length at most 6 are not adjacent.

In this paper, we get the following result.

Theorem 1. Suppose G is a planar graph without adjacent 7-cycles. If � ≥ 6, then G is of class 1.

2. Proof of Theorem 1

To prove our result, we will introduce some known lemmas.

Lemma 2. [6,7] If G is a planar graph with �(G) ≥ 7, then G is of class 1.

Lemma 3. (Vizing’s Adjacency Lemma [1]) Let G be a �-critical graph, and let u and v be adjacent vertices of G with d(v) = k.
(a) If k < �, then u is adjacent to at least � − k + 1 vertices of degree �;
(b) If k = �, then u is adjacent to at least two vertices of degree �.

Lemma 4. [7] Let G be a �-critical graph, uv ∈ E(G) and d(u) + d(v) = � + 2. Then
(a) every vertex of N({u, v}) \ {u, v} is a �-vertex;
(b) every vertex of N(N({u, v})) \ {u, v} is of degree at least � − 1;
(c) if d(u), d(v) < �, then every vertex of N(N({u, v})) \ {u, v} is a �-vertex.

Lemma 5. [6] No �-critical graph has distinct vertices x, y, z such that x is adjacent to y and z, d(z) < 2� − d(x) − d(y) + 2, and xz
is in at least d(x) + d(y) − � − 2 triangles not containing y.

To be convenient, for a plane graph G , let F (G) be the face set of G . A face of a graph is said to be incident with all 
edges and vertices in its boundary. The degree of a face f , denoted by dG ( f ) is the number of edges incident with f where 
each cut edge is counted twice. A k-, k+-face is a face of degree k, at least k. A k-face of G is called an (i1, i2, · · · , ik)-face 
if the vertices in its boundary are of degrees i1, i2, · · · , ik respectively. A 3-face is denoted by [x, y, z] if it is incident with 
distinct vertices x, y, z and d(x) ≤ d(y) ≤ d(z). A 4-face f = [w, v, x, y] is called special if d(x) = 2 and v, x, y form a 3-face. 
For a vertex v ∈ V (G), we denote by dk(v), dk+ (v) the number of k-neighbors, k+-neighbors of v and fk(v) the number of 
k-faces incident with v .

Lemma 6. Let G be a �-critical graph. For every 6-vertex v ∈ V (G), if d2(v) = 1 (say is v1) and if any two 7-cycles are not adjacent 
in G, then

(a) If f3(v) = 3, then f5+(v) ≥ 1;
(b) If f3(v) = 4 and v1 are incident with one 3-face and one 5-face, then f8+(v) = 1;
(c) If f3(v) = 4 and v1 are incident with one 3-face and one 6-face, then f7+(v) = 1.

Proof. Let v1, v2, · · · , v6 be neighbors of v of G in an anticlockwise order. Let f i of G be face incident with v , vi and vi+1, 
for all i such that i ∈ {1, 2, · · · , 6}. Note that all the subscripts in the paper are taken modulo 6.

(a) There are some cases by symmetry. (1) f1, f2 and f3 are 3-faces. (2) f1, f2 and f4 are 3-faces. (3) f1, f2 and f5
are 3-faces. (4) f1, f3 and f4 are 3-faces. (5) f1, f3 and f5 are 3-faces. (6) f1, f4 and f5 are 3-faces. (7) f2, f3 and f4 are 
3-faces. (8) f2, f3 and f5 are 3-faces. Now we prove that (1). If d( f4) ≥ 5, then f5+ (v) ≥ 1; otherwise d( f4) = 4. If d( f6) ≥ 5, 
then f5+ (v) ≥ 1; otherwise d( f6) = 4. If d( f5) = 4, then there are adjacent 7-cycles. So d( f5) ≥ 5 and f5+ (v) ≥ 1. (2)–(8) 
are similar to be proved as (1), we omit here.

(b) Since v1 are incident with one 3-face and one 5-face, so d( f1) = 3 and d( f6) = 5. There are some cases by symmetry. 
(1) f2, f3 and f4 are 3-faces. (2) f2, f3 and f5 are 3-faces. (3) f2, f4 and f5 are 3-faces. (4) f3, f4 and f5 are 3-faces. Now 
we prove that (1). If d( f5) ∈ {4, 5, 6, 7}, then there are adjacent 7-cycles. So d( f5) ≥ 8 and f8+ (v) = 1. (2)–(4) are similar to 
be proved as (1), we omit here.

(c) It is similar to be proved as (b), we omit here. �
Lemma 7. Let G be a �-critical graph such that any two 7-cycles are not adjacent in G. For every 6-vertex v ∈ V (G), if d2(v) =
1, f3(v) = 4 and v is incident with a special 4-face f = [u, v, w, z] such that d(u) = 2, then f3(z) ≤ 3 and f5+ (z) ≥ 2.
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