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The belief propagation (BP) algorithm is a message-passing algorithm that is used for 
solving probabilistic inference problems. In practice, the BP algorithm performs well as 
a heuristic in many application fields. However, the theoretical understanding of BP is 
limited. To improve the theoretical understanding of BP, the BP algorithm has been applied 
to many well-understood combinatorial optimization problems. In this paper, we consider 
BP applied to the maximum-weight independent set (MWIS) and minimum spanning tree 
(MST) problems.
Sanghavi et al. (2009) [12] applied the BP algorithm to the MWIS problem. We denote their 
algorithm by BP-MWIS. They showed that if the LP relaxation of the MWIS problem has a 
unique integral optimal solution and BP-MWIS converges, then BP-MWIS finds the optimal 
solution. Also, they showed that if the LP relaxation has a non-integral optimal solution, 
then BP-MWIS does not converge. In this paper, we precisely characterize the graphs for 
which BP-MWIS is guaranteed to find the optimal solution, regardless of the node weights.
Bayati et al. (2008) [2] applied the BP algorithm to the MST problem. We denote their 
algorithm by BP-MST. They showed that if BP-MST converges, then it finds the optimal 
solution. In this paper, however, we provide an instance for which BP-MST does not 
converge. Also, since this instance is small and simple, we believe that BP-MST does not 
converge for most instances encountered in practice.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The belief propagation (BP) algorithm is a message-passing algorithm that is used for solving probabilistic inference 
problems on graphical models. It was proposed by Pearl in 1988 [8]. Typical graphical models to which BP is applied 
are Bayesian networks, Markov random fields, and factor graphs. In this paper, we consider the max-product variant of 
BP (or the functionally equivalent min-sum variant), which is used to compute maximum a posteriori probability (MAP) 
estimates.

Recently, BP has experienced great popularity. It has been applied in many fields, such as machine learning, image 
processing, computer vision, and statistics. For an introduction to BP and several applications, we refer to Yedidia et al. [17]. 
There are two main reasons for the popularity of BP. First, it is widely applicable and easy to implement because of its 
simple and iterative message-passing nature. Second, it performs well in practice in numerous applications [14,16].
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If the graphical model is tree-structured, BP computes exact MAP estimates. However, if the graphical model con-
tains cycles, the convergence and correctness of BP have been shown only for specific classes of graphical models. To 
improve the general understanding of BP and to gain new insights about the algorithm, it has recently been tried to 
rigorously analyze the performance of BP as either a heuristic or an exact algorithm for several combinatorial optimiza-
tion problems. Amongst others, it has been applied to the maximum-weight matching (MWM) problem [1,3,4,9,10], the 
minimum spanning tree (MST) problem [2], the minimum-cost flow (MCF) problem [4,7], the maximum-weight indepen-
dent set (MWIS) problem [11,12], and the 3-coloring problem [5]. BP has even been used to analyze the satisfiability 
threshold [6]. The reason to consider BP applied to these combinatorial optimization problems is that these optimiza-
tion problems are well understood. This facilitates a rigorous analysis of BP, which is often difficult for other applica-
tions.

In this paper, we consider BP applied to the MWIS and the MST problem. Sanghavi et al. [12] introduced a variant 
of BP for the MWIS problem, which we denote by BP-MWIS. They showed that BP-MWIS does not converge if the LP 
relaxation of the problem has a non-integral optimal solution. Also, they showed that even if the LP relaxation of the 
problem has a unique integral optimal solution, BP-MWIS is not guaranteed to converge. In this paper we character-
ize precisely the graph structures for which BP-MWIS is guaranteed to work well. This means that we characterize the 
graph structures for which BP-MWIS is guaranteed to converge to the correct solution irrespective of the node weights 
(as long as the MWIS is unique). We show (Section 3) that the graphs for which BP-MWIS converges to the correct 
solution for all possible node weights are exactly those graphs that contain at most one even cycle and no odd cy-
cles.

Bayati et al. [2] introduced a variant of BP for the MST problem, which we denote by BP-MST. The MST problem is 
easily solvable using a variety of algorithms. Still, it is interesting to analyze the performance of BP applied to the MST 
problem since the MST problem has a global connectivity constraint. This is in contrast to, for example, the MWM, MCF, and 
MWIS problems, which only have local constraints. Bayati et al. showed the following positive result for BP-MST: if BP-MST 
converges, then it converges to the correct solution. In this paper, we show a negative result for BP-MST. In Section 4, we 
show a small instance for which BP-MST does not converge. In addition, the property of this instance that ensures that 
BP-MST does not converge is quite general and carries over to many other instances. Therefore, we believe that BP-MST 
does not converge for most instances in practice.

The rest of this paper is organized as follows. First we introduce the MWIS (Section 1.1) and MST (Section 1.2) problems. 
In Section 2, we introduce the BP algorithm and the variants for the MWIS problem by Sanghavi et al. [12] and the MST 
problem by Bayati et al. [2]. In Section 3 we state our results for BP-MWIS. Finally, in Section 4 we state our results for 
BP-MST.

To conclude this section, we introduce some notation and assumptions. We denote the weight of a node v by w(v). Also, 
we denote the weight of a set of nodes V by w(V ). That is,

w(V ) =
∑
v∈V

w(v).

For a graph G = (V , E) we define the neighborhood N(v) of a node v as

N(v) = {u | (u, v) ∈ E}.

In this paper, we assume that all graphs are connected. For the MST problem we do this since no spanning tree exists 
for a disconnected graph. For the MWIS problem we do this since maximum-weight independent sets on disconnected 
graphs can be computed by separately computing maximum-weight independent sets on the individual components and 
then taking the union of those sets. Finally, as is commonly done, we assume that the optimal solutions for the MST and 
MWIS problems are unique, since it is well-known that BP does not converge for instances that have multiple optimal 
solutions for these problems [1–3,10].

1.1. Maximum-weight independent set problem

Let G = (V , E) be an undirected weighted graph. An independent set S is a subset S ⊂ V of nodes such that for every 
edge (u, v) ∈ E at most one of u and v is in S . The MWIS problem consists of finding an independent set of maximum 
weight. A subset of nodes S∗ ⊂ V is an MWIS of G if and only if

S∗ ∈ argmax{w(S) | S is an independent set of G}.

It is straightforward to formulate the MWIS problem as an integer program by identifying with each node u ∈ V a binary 
variable xu ∈ {0, 1}. Here xu = 0 can be interpreted as x not being part of the independent set S , while xu = 1 can be 
interpreted as x being part of S . The integer program contains constraints that prevent two neighboring nodes from both 
being included in S . The integer program (IP-MWIS) is as follows
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