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Abstract

In this paper we consider the problem of learning nearest-prototype classifiers
in any finite distance space; that is, in any finite set equipped with a distance
function. An important advantage of a distance space over a metric space is that
the triangle inequality need not be satisfied, which makes our results potentially
very useful in practice. We consider a family of binary classifiers for learning
nearest-prototype classification on distance spaces, building on the concept of
large-width learning which we introduced and studied in earlier works. Nearest-
prototype is a more general version of the ubiquitous nearest-neighbor classifier:
a prototype may or may not be a sample point. One advantage in the approach
taken in this paper is that the error bounds depend on a ‘width’ parameter,
which can be sample-dependent and thereby yield a tighter bound.

1. Introduction

Learning Vector Quantization (LVQ) and its various extensions introduced by
Kohonen [22] are used successfully in many machine learning tools and applica-
tions. Learning pattern classification by LVQ is based on adapting a fixed set of
labeled prototypes in Euclidean space and using the resulting set of prototypes
in a nearest-prototype rule (winner-take-all) to classify any point in the input
space. As [21] mentions, LVQ fails if Euclidean representation is not well-suited
for the data; and there have been extensions of LVQ to try to allow different
metrics [21, 26] and take advantage of samples for which a more confident (or a
large margin) classification can be obtained. Generalization error bounds with
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