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The tools of drift analysis enable bounds on run-times (or first hitting times) of stochastic 
processes, such as randomised algorithms, based on bounds on the expected progress 
at each time step in terms of a distance measure. In this paper, we generalise the 
multiplicative drift theorem to apply to processes which are best described by more 
than one distance function. We provide four examples to illustrate the application of 
this method: the run-time analysis of an evolutionary algorithm on a multi-objective 
optimisation problem; the analysis of a variant of the voter model on a network; a parallel 
evolutionary algorithm taking place on islands with limited migration; a synchronous 
network epidemiology model. In the latter example, we show that populations with limited 
neighbourhoods (such as the ring topology) are able to resist epidemics much more 
effectively than well-mixed populations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Drift analysis has now become a standard tool in the analysis of randomised search heuristics (see, for example, [9,10]). 
The fundamental idea is that, given an estimate of the expected progress towards some target at each time step, we can 
use this to bound the expected time for the process to reach that target. Upper and lower bound versions exist. We will 
consider the case of multiplicative drift [2], and will generalise this to the situation where the process concerned is described 
by more than one distance measure.

We begin, then, by considering a finite state space X and a random process X0, X1, X2, . . . on this set. Suppose we are 
interested in the first hitting time, T , of a target set S ⊆X . We describe the progress towards this target set by means of a 
distance function.

Definition 1. Given a set X and a target set S ⊆X a distance function, with respect to S , is a function d :X →R such that:

x ∈ S =⇒ d(x) = 0 and
x /∈ S =⇒ d(x) > 0.

It should be noted that we do not necessarily expect a distance function to be a metric.
We estimate the progress of the random sequence towards S by bounding the expected change in the distance. This then 

allows us to bound the expected first hitting time of the target.
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Theorem 1 (Multiplicative drift [1,2]). Let X0, X1, X2, . . . be a random sequence from the finite set X . Let S ⊆ X be a target set, and 
let d :X → R be a distance function with respect to S. Let T be the first hitting time of the target set S.

Suppose, for all states x /∈ S, we have

E[d(Xt+1) | Xt = x] ≤ δd(x)

for some constant 0 < δ < 1. Then:

E[T | X0 = x0] ≤ 1 + log(d(x0)/d∗)
1 − δ

where

d∗ = min{d(x) | x /∈ S}.
The probability that the first hitting time exceeds

log(d(x0)/d∗) + c

1 − δ

for any c > 0 is no more than

e−c .

It should be noted that, while there is a sharp tail bound on the probability that the expected hitting time exceeds 
the upper bound, the bound can, in some situations, be rather conservative. A simple example that illustrates this is the 
unexploded bomb problem, in which there are n bombs that, at a given time step, each have probability p of exploding. If 
there are currently k unexploded bombs, then the expected number of unexploded bombs at the next time step is (1 − p)k. 
The multiplicative drift theorem them tells us that the expected time until they have all exploded is bounded above by 
(1 + log n)/p. This is quite a good estimate when p is small, but as p approaches 1, the expected time actually approaches 
1 and not 1 + log n. The upper bounds are better when the process described typically only makes small jumps.

Our goal in this paper is to extend the multiplicative drift theorem to the case where the underlying random sequence is 
best described by more than one distance function, and where the progress in each distance function considered separately 
is not necessarily monotonic. We will, in particular, look at the situation where the expected change in each distance 
function is a linear function of all the distances, and provide conditions under which first hitting time bounds can be 
proved. This turns out to be relatively straightforward for the case of two distance functions. Dealing with a larger number 
of functions requires sufficient structure in the problem to make progress. However, it is possible, in some situations, to 
deal even with an arbitrary number of dimensions. Our result will inherit the strengths (in terms of the sharp tail bound) 
and the weaknesses (in terms of the conservatism) of the original multiplicative drift theorem.

We will illustrate our result with four examples. Firstly, we will look at proving the run-time of a simple evolutionary 
algorithm on a multi-objective optimisation problem. Then we will look at the so-called voter model on a graph, examining a 
variant in which each voter has an inherent preference. A generalisation of that model allows us to analyse an evolutionary 
process taking place in parallel on multiple islands, with migration between neighbouring islands. Finally, we look at a 
synchronous model of epidemiology on a network and derive conditions for which epidemics will fail to take hold in the 
population. In particular, we will show that a population with very limited neighbourhood structure (we will consider a 
ring topology) is far better able to resist an epidemic than a well-mixed population.

2. Multi-objective drift

Now suppose our process is described by several distance functions d1, . . . , dm such that the intersection of the corre-
sponding target sets is not empty. This intersection is now our new target set S . The expected change in each of these 
distances can depend on each other as follows. Let A be a non-negative m × m matrix. Then we suppose that, for each di

and x /∈ S , we have

E[di(Xt+1) | Xt = x] ≤
∑

j

Ai, jd j(x).

In order to find a measure of our overall progress, we will define a new distance function, which will be a convex 
combination of d1, . . . , dm .

Suppose that A has a left eigenvector v which contains only real, positive entries. We can assume that this eigenvector 
is normalised so that its components sum to 1. Let λ be the corresponding eigenvalue.

vA = λv.

We will use the normalised v to define our new distance function. Letting d(x) be the (column) vector (d1(x), . . . , dm(x)), 
our new distance function is simply v · d(x).
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