Doctopic: Algorithms, automata, complexity and games

[Theoretical Computer Science](https://doi.org/10.1016/j.tcs.2017.09.018) ••• (••••) •••-•••

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Theoretical Computer Science

TCS:11317

www.elsevier.com/locate/tcs

An approximation scheme for minimizing the makespan of the parallel identical multi-stage flow-shops $\dot{\mathbb{R}}$

Weitian Tong^{a,b}, Eiji Miyano^c, Randy Goebel^b, Guohui Lin^{b,∗}

^a *Department of Computer Sciences, Georgia Southern University, Statesboro, GA 30460, USA*

^b *Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada*

^c *Department of Systems Design and Informatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan*

A R T I C L E I N F O A B S T R A C T

Article history: Received 5 August 2016 Received in revised form 7 July 2017 Accepted 21 September 2017 Available online xxxx

Keywords: Multiprocessor scheduling Flow-shop scheduling Makespan Linear program Polynomial-time approximation scheme

In the *parallel k-stage flow-shops* problem, we are given *m* identical *k*-stage flow-shops and a set of jobs. Each job can be processed by any one of the flow-shops but switching between flow-shops is not allowed. The objective is to minimize the makespan, which is the finishing time of the last job. This problem generalizes the classical parallel identical machine scheduling (where $k = 1$) and the classical flow-shop scheduling (where $m = 1$) problems, and thus it is NP-hard. We present a polynomial-time approximation scheme (PTAS) for the problem, when *m* and *k* are fixed constants. The key technique is to partition the jobs into *big* jobs and *small* jobs, enumerate over all feasible schedules for the big jobs, and handle the small jobs by solving a linear program and employing a "sliding" method. Such a technique has been used in the design of PTAS for several flow-shop scheduling variants. Our main contributions are the non-trivial application of this technique and a valid answer to the open question in the literature.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the *parallel k-stage flow-shop* problem, we are given *m* parallel identical *k*-stage flow-shops *F*1*, F*2*,..., Fm* and a set of *n* jobs $\mathcal{J} = \{J_1, J_2, \ldots, J_n\}$. These *k*-stage flow-shops are the *classic* flow-shops, each contains exactly one machine at every stage, *i.e.*, *k* sequential machines. Every job has *k* operations, and it can be assigned to exactly one of the *m* flow-shops for processing; once it is assigned to the flow-shop, its *k* operations are then respectively processed on the *k* sequential machines in the flow-shop. The goal is to minimize the makespan, which is the completion time of the last job. We denote the problem for simplicity as (m, k) -PFS. Let $M_{\ell,1}, M_{\ell,2}, \ldots, M_{\ell,k}$ denote the k sequential machines in the flow-shop F_{ℓ} , for every ℓ . The job J_i is represented as a k-tuple $(p_{i,1}, p_{i,2}, \ldots, p_{i,k})$, where $p_{i,j}$ is the processing time for the j-th operation, that is, *Ji* needs to be processed non-preemptively on the *j*-th machine in the flow-shop to which the job is assigned. For all *i* and *j*, the processing time *pi,^j* is a non-negative real number.

It is clear to see that, when $m = 1$, the (m, k) -PFS problem is the classic *flow-shop scheduling* [\[5\]](#page--1-0) (a *k*-stage flow-shop); when $k = 1$, the (m, k) -PFS problem is the classic *multiprocessor scheduling* [\[5\]](#page--1-0) (*m* parallel identical machines). When the two-stage flow-shops are involved, *i.e.*, $k = 2$, the $(m, 2)$ -PFS problem has been previously studied in [\[13,25,28,4\].](#page--1-0) Here

Corresponding author.

<https://doi.org/10.1016/j.tcs.2017.09.018> 0304-3975/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: W. Tong et al., An approximation scheme for minimizing the makespan of the parallel identical multi-stage flow-shops, Theoret. Comput. Sci. (2017), https://doi.org/10.1016/j.tcs.2017.09.018

An extended abstract appears in the Proceedings of FAW 2016.

E-mail addresses: wtong@georgiasouthern.edu (W. Tong), miyano@ces.kyutech.ac.jp (E. Miyano), rgoebel@ualberta.ca (R. Goebel), guohui@ualberta.ca $(G.$ Lin $).$

Doctopic: Algorithms, automata, complexity and games

2 *W. Tong et al. / Theoretical Computer Science* ••• *(*••••*)* •••*–*•••

we first review the complexity and the approximation algorithms for the flow-shop scheduling and the multiprocessor scheduling problems.

For the *k*-stage flow-shop problem, it is known that when *k* = 2 or 3, there exists an optimal schedule that is a *permutation schedule*, in which the jobs are processed on all the *k* machines in the same order; but when *k* ≥ 4, it is shown [\[3\]](#page--1-0) that there may exist no optimal schedule that is a permutation schedule. Johnson [\[18\]](#page--1-0) presented an *O(n* log*n)*-time algorithm for the two-stage flow-shop problem, where *n* is the number of jobs; the *k*-stage flow-shop problem becomes *strongly* NP-hard when $k \geq 3$ [\[6\].](#page--1-0) After several efforts [\[18,6,7,2\],](#page--1-0) Hall [\[12\]](#page--1-0) designed a polynomial-time approximation scheme (PTAS) for the *k*-stage flow-shop problem, for any fixed constant $k > 3$. Due to the strong NP-hardness, such a PTAS is the best possible unless $P = NP$. When *k* is a part of the input *(i.e.*, an arbitrary integer). Williamson et al. [\[27\]](#page--1-0) showed that the flow-shop scheduling cannot be approximated within 1*.*25; nevertheless, it remains unknown whether this case is APX-complete, that is, whether the problem admits a constant ratio approximation algorithm.

Note that the *m*-parallel identical machine scheduling problem is NP-hard when *m* ≥ 2 [\[5\].](#page--1-0) When *m* is a fixed integer, the problem admits a pseudo-polynomial time exact algorithm [\[5\],](#page--1-0) and Sahni [\[23\]](#page--1-0) showed that this exact algorithm can be used to construct a *fully* PTAS (FPTAS); when *m* is a part of the input, the problem becomes strongly NP-hard, but still admits a PTAS by Hochbaum and Shmoys [\[14\].](#page--1-0) ¹ The *list-scheduling* algorithm by Graham [\[8\]](#page--1-0) is a *(*2 − 1*/m)*-approximation, for arbitrary *m*.

The APX-hardness of the classic *k*-stage flow-shop problem when *k* is a part of the input implies the APX-hardness of the *(m,k)*-PFS problem when *k* is a part of the input. When *k* is a fixed integer, the *(m,k)*-PFS problem could admit a PTAS; however, since the classic *k*-stage flow-shop problem is strongly NP-hard for a fixed $k > 3$, the (m, k) -PFS problem would not admit an FPTAS unless $P = NP$. In this paper, we present a PTAS for the (m, k) -PFS problem when both k and *m* are fixed integers, which is the best possible approximability result. On the other hand, the (in-)approximability of the *(m,k)*-PFS problem when *m* is a part of the input while *k* is a fixed integer is left open.

Besides the *(m,k)*-PFS problem, another generalization of the flow-shop scheduling and the multiprocessor scheduling is the so-called *hybrid k-stage flow-shop* problem [\[20,22\].](#page--1-0) A hybrid *k*-stage flow-shop is a *flexible* flow-shop, that contains $m_i \ge 1$ parallel identical machines in the *j*-th stage, for $j = 1, 2, \ldots, k$. The problem is abbreviated as (m_1, m_2, \ldots, m_k) -HFS. A job J_i is again represented as a k-tuple $(p_{i,1}, p_{i,2}, \ldots, p_{i,k})$, where $p_{i,j}$ is the processing time for the j-th operation, which can be processed non-preemptively on any one of the m_i machines in the *j*-th stage. The objective of the (m_1, m_2, \ldots, m_k) -HFS problem is also to minimize the makespan. One clearly sees that when $m_1 = m_2 = \ldots = m_k = 1$, the problem reduces to the classic *k*-stage flow-shop problem; when $k = 1$, the problem reduces to the classic *m*-parallel identical machine scheduling problem.

As a toy example, suppose there is a set of three jobs, $\mathcal{J} = \{J_1 = (p_{1,1}, p_{1,2}, p_{1,3}), J_2 = (p_{2,1}, p_{2,2}, p_{2,3}), J_3 =$ $(p_{3,1}, p_{3,2}, p_{3,3})$ }, that need to be processed. When we are provided with a $(2, 3)$ -PFS (that is, two parallel identical 3-stage flow-shops), we may assign *J*¹ to the second flow-shop; then *J*¹ will be processed on the first machine of the second flow-shop for $p_{1,1}$ units of time, then on the second machine of the second flow-shop for $p_{1,2}$ units of time, and lastly on the third machine of the second flow-shop for $p_{1,3}$ units of time. On the other hand, if we are provided with a $(2, 1, 3)$ -HFS, then we may process J_1 on any one of the two first-stage machines for $p_{1,1}$ units of time, then on the (only) second-stage machine for $p_{1,2}$ units of time, and lastly on any one of the three third-stage machine for $p_{1,3}$ units of time.

The literature on the hybrid *k*-stage flow-shop problem (m_1, m_2, \ldots, m_k) -HFS is also rich [\[20,22\],](#page--1-0) especially on the hybrid two-stage flow-shop problem *(m*1*,m*2*)*-HFS. First, *(*1*,* 1*)*-HFS is the classic two-stage flow-shop problem which can be optimally solved in $O(n \log n)$ time [\[18\],](#page--1-0) where *n* is the number of jobs. When $\max\{m_1, m_2\} \geq 2$, Hoogeveen et al. [\[15\]](#page--1-0) showed that the (m_1, m_2) -HFS problem is strongly NP-hard. The special cases $(m_1, 1)$ -HFS and $(1, m_2)$ -HFS have attracted many researchers' attention $[9,11,1,10]$; the interested reader might refer to $[26]$ for a survey on the hybrid two-stage flow-shop problem with a single machine in one stage.

For the general hybrid *k*-stage flow-shop problem (m_1, m_2, \ldots, m_k) -HFS, when all the m_1, m_2, \ldots, m_k are fixed integers, Hall [\[12\]](#page--1-0) claimed that the PTAS for the classic *k*-stage flow-shop problem can be extended to a PTAS for the *(m*1*,m*2*,...,mk)*-HFS problem. Later, Schuurman and Woeginger [\[24\]](#page--1-0) presented a PTAS for the hybrid two-stage flow-shop problem (m_1, m_2) -HFS, even when the numbers of machines m_1 and m_2 in the two stages are a part of the input. Jansen and Sviridenko [\[17\]](#page--1-0) generalized this result to the hybrid *k*-stage flow-shop problem (m_1, m_2, \ldots, m_k) -HFS, where *k* is a fixed integer while m_1, m_2, \ldots, m_k can be a part of the input. Due to the inapproximability of the classic *k*-stage flow-shop problem, when *k* is arbitrary, the (m_1, m_2, \ldots, m_k) -HFS problem cannot be approximated within 1.25 unless $P = NP$ [\[27\].](#page--1-0) [Table 1](#page--1-0) summarizes the results we reviewed thus far.² In addition, there are plenty of heuristic algorithms in the literature for the general hybrid *k*-stage flow-shop problem, and the interested readers can refer to the survey by Ruiz et al. [\[22\].](#page--1-0)

Compared to the rich literature on the hybrid *k*-stage flow-shop problem, the parallel *k*-stage flow-shop problem is much less studied. In fact, the general *(m,k)*-PFS problem is almost untouched, except only the two-stage flow-shops are involved [\[13,25,28,4\].](#page--1-0) He et al. [\[13\]](#page--1-0) first studied the *m* parallel identical two-stage flow-shop problem *(m,* 2*)*-PFS, motivated

 $¹$ We note that there are sequences of work in developing faster PTASes, which are not the intended subject in this paper. The interested readers might</sup> refer to [\[16\]](#page--1-0) for major references.

 $²$ We do not list the detailed running time of these algorithms. Again, we note that there are sequences of work in developing faster PTASes, which are</sup> not the intended subject in this paper. The interested readers might refer to [\[16\]](#page--1-0) for major references.

Please cite this article in press as: W. Tong et al., An approximation scheme for minimizing the makespan of the parallel identical multi-stage flow-shops, Theoret. Comput. Sci. (2017), https://doi.org/10.1016/j.tcs.2017.09.018

Download English Version:

<https://daneshyari.com/en/article/6875455>

Download Persian Version:

<https://daneshyari.com/article/6875455>

[Daneshyari.com](https://daneshyari.com/)