
JID:TCS AID:11317 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.222; Prn:28/09/2017; 10:36] P.1 (1-8)

Theoretical Computer Science ••• (••••) •••–•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

An approximation scheme for minimizing the makespan 

of the parallel identical multi-stage flow-shops ✩

Weitian Tong a,b, Eiji Miyano c, Randy Goebel b, Guohui Lin b,∗
a Department of Computer Sciences, Georgia Southern University, Statesboro, GA 30460, USA
b Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
c Department of Systems Design and Informatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 August 2016
Received in revised form 7 July 2017
Accepted 21 September 2017
Available online xxxx

Keywords:
Multiprocessor scheduling
Flow-shop scheduling
Makespan
Linear program
Polynomial-time approximation scheme

In the parallel k-stage flow-shops problem, we are given m identical k-stage flow-shops and 
a set of jobs. Each job can be processed by any one of the flow-shops but switching 
between flow-shops is not allowed. The objective is to minimize the makespan, which 
is the finishing time of the last job. This problem generalizes the classical parallel identical 
machine scheduling (where k = 1) and the classical flow-shop scheduling (where m = 1) 
problems, and thus it is NP-hard. We present a polynomial-time approximation scheme 
(PTAS) for the problem, when m and k are fixed constants. The key technique is to partition 
the jobs into big jobs and small jobs, enumerate over all feasible schedules for the big jobs, 
and handle the small jobs by solving a linear program and employing a “sliding” method. 
Such a technique has been used in the design of PTAS for several flow-shop scheduling 
variants. Our main contributions are the non-trivial application of this technique and a 
valid answer to the open question in the literature.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the parallel k-stage flow-shop problem, we are given m parallel identical k-stage flow-shops F1, F2, . . . , Fm and a set of 
n jobs J = { J1, J2, . . . , Jn}. These k-stage flow-shops are the classic flow-shops, each contains exactly one machine at every 
stage, i.e., k sequential machines. Every job has k operations, and it can be assigned to exactly one of the m flow-shops 
for processing; once it is assigned to the flow-shop, its k operations are then respectively processed on the k sequential 
machines in the flow-shop. The goal is to minimize the makespan, which is the completion time of the last job. We denote 
the problem for simplicity as (m, k)-PFS. Let M�,1, M�,2, . . . , M�,k denote the k sequential machines in the flow-shop F� , for 
every �. The job J i is represented as a k-tuple (pi,1, pi,2, . . . , pi,k), where pi, j is the processing time for the j-th operation, 
that is, J i needs to be processed non-preemptively on the j-th machine in the flow-shop to which the job is assigned. For 
all i and j, the processing time pi, j is a non-negative real number.

It is clear to see that, when m = 1, the (m, k)-PFS problem is the classic flow-shop scheduling [5] (a k-stage flow-shop); 
when k = 1, the (m, k)-PFS problem is the classic multiprocessor scheduling [5] (m parallel identical machines). When the 
two-stage flow-shops are involved, i.e., k = 2, the (m, 2)-PFS problem has been previously studied in [13,25,28,4]. Here 

✩ An extended abstract appears in the Proceedings of FAW 2016.

* Corresponding author.
E-mail addresses: wtong@georgiasouthern.edu (W. Tong), miyano@ces.kyutech.ac.jp (E. Miyano), rgoebel@ualberta.ca (R. Goebel), guohui@ualberta.ca

(G. Lin).

https://doi.org/10.1016/j.tcs.2017.09.018
0304-3975/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2017.09.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:wtong@georgiasouthern.edu
mailto:miyano@ces.kyutech.ac.jp
mailto:rgoebel@ualberta.ca
mailto:guohui@ualberta.ca
https://doi.org/10.1016/j.tcs.2017.09.018


JID:TCS AID:11317 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.222; Prn:28/09/2017; 10:36] P.2 (1-8)

2 W. Tong et al. / Theoretical Computer Science ••• (••••) •••–•••

we first review the complexity and the approximation algorithms for the flow-shop scheduling and the multiprocessor 
scheduling problems.

For the k-stage flow-shop problem, it is known that when k = 2 or 3, there exists an optimal schedule that is a permuta-
tion schedule, in which the jobs are processed on all the k machines in the same order; but when k ≥ 4, it is shown [3] that 
there may exist no optimal schedule that is a permutation schedule. Johnson [18] presented an O (n log n)-time algorithm for 
the two-stage flow-shop problem, where n is the number of jobs; the k-stage flow-shop problem becomes strongly NP-hard 
when k ≥ 3 [6]. After several efforts [18,6,7,2], Hall [12] designed a polynomial-time approximation scheme (PTAS) for the 
k-stage flow-shop problem, for any fixed constant k ≥ 3. Due to the strong NP-hardness, such a PTAS is the best possible 
unless P = NP. When k is a part of the input (i.e., an arbitrary integer), Williamson et al. [27] showed that the flow-shop 
scheduling cannot be approximated within 1.25; nevertheless, it remains unknown whether this case is APX-complete, that 
is, whether the problem admits a constant ratio approximation algorithm.

Note that the m-parallel identical machine scheduling problem is NP-hard when m ≥ 2 [5]. When m is a fixed integer, 
the problem admits a pseudo-polynomial time exact algorithm [5], and Sahni [23] showed that this exact algorithm can 
be used to construct a fully PTAS (FPTAS); when m is a part of the input, the problem becomes strongly NP-hard, but still 
admits a PTAS by Hochbaum and Shmoys [14].1 The list-scheduling algorithm by Graham [8] is a (2 − 1/m)-approximation, 
for arbitrary m.

The APX-hardness of the classic k-stage flow-shop problem when k is a part of the input implies the APX-hardness of 
the (m, k)-PFS problem when k is a part of the input. When k is a fixed integer, the (m, k)-PFS problem could admit a 
PTAS; however, since the classic k-stage flow-shop problem is strongly NP-hard for a fixed k ≥ 3, the (m, k)-PFS problem 
would not admit an FPTAS unless P = NP. In this paper, we present a PTAS for the (m, k)-PFS problem when both k and 
m are fixed integers, which is the best possible approximability result. On the other hand, the (in-)approximability of the 
(m, k)-PFS problem when m is a part of the input while k is a fixed integer is left open.

Besides the (m, k)-PFS problem, another generalization of the flow-shop scheduling and the multiprocessor scheduling is 
the so-called hybrid k-stage flow-shop problem [20,22]. A hybrid k-stage flow-shop is a flexible flow-shop, that contains m j ≥ 1
parallel identical machines in the j-th stage, for j = 1, 2, . . . , k. The problem is abbreviated as (m1, m2, . . . , mk)-HFS. A job 
J i is again represented as a k-tuple (pi,1, pi,2, . . . , pi,k), where pi, j is the processing time for the j-th operation, which can 
be processed non-preemptively on any one of the m j machines in the j-th stage. The objective of the (m1, m2, . . . , mk)-HFS 
problem is also to minimize the makespan. One clearly sees that when m1 = m2 = . . . = mk = 1, the problem reduces to the 
classic k-stage flow-shop problem; when k = 1, the problem reduces to the classic m-parallel identical machine scheduling 
problem.

As a toy example, suppose there is a set of three jobs, J = { J1 = (p1,1, p1,2, p1,3), J2 = (p2,1, p2,2, p2,3), J3 =
(p3,1, p3,2, p3,3)}, that need to be processed. When we are provided with a (2, 3)-PFS (that is, two parallel identical 3-stage 
flow-shops), we may assign J1 to the second flow-shop; then J1 will be processed on the first machine of the second 
flow-shop for p1,1 units of time, then on the second machine of the second flow-shop for p1,2 units of time, and lastly on 
the third machine of the second flow-shop for p1,3 units of time. On the other hand, if we are provided with a (2, 1, 3)-HFS, 
then we may process J1 on any one of the two first-stage machines for p1,1 units of time, then on the (only) second-stage 
machine for p1,2 units of time, and lastly on any one of the three third-stage machine for p1,3 units of time.

The literature on the hybrid k-stage flow-shop problem (m1, m2, . . . , mk)-HFS is also rich [20,22], especially on the hybrid 
two-stage flow-shop problem (m1, m2)-HFS. First, (1, 1)-HFS is the classic two-stage flow-shop problem which can be opti-
mally solved in O (n log n) time [18], where n is the number of jobs. When max{m1, m2} ≥ 2, Hoogeveen et al. [15] showed 
that the (m1, m2)-HFS problem is strongly NP-hard. The special cases (m1, 1)-HFS and (1, m2)-HFS have attracted many 
researchers’ attention [9,11,1,10]; the interested reader might refer to [26] for a survey on the hybrid two-stage flow-shop 
problem with a single machine in one stage.

For the general hybrid k-stage flow-shop problem (m1, m2, . . . , mk)-HFS, when all the m1, m2, . . ., mk are fixed in-
tegers, Hall [12] claimed that the PTAS for the classic k-stage flow-shop problem can be extended to a PTAS for the 
(m1, m2, . . . , mk)-HFS problem. Later, Schuurman and Woeginger [24] presented a PTAS for the hybrid two-stage flow-shop 
problem (m1, m2)-HFS, even when the numbers of machines m1 and m2 in the two stages are a part of the input. Jansen 
and Sviridenko [17] generalized this result to the hybrid k-stage flow-shop problem (m1, m2, . . . , mk)-HFS, where k is a 
fixed integer while m1, m2, . . . , mk can be a part of the input. Due to the inapproximability of the classic k-stage flow-shop 
problem, when k is arbitrary, the (m1, m2, . . . , mk)-HFS problem cannot be approximated within 1.25 unless P = NP [27]. 
Table 1 summarizes the results we reviewed thus far.2 In addition, there are plenty of heuristic algorithms in the literature 
for the general hybrid k-stage flow-shop problem, and the interested readers can refer to the survey by Ruiz et al. [22].

Compared to the rich literature on the hybrid k-stage flow-shop problem, the parallel k-stage flow-shop problem is 
much less studied. In fact, the general (m, k)-PFS problem is almost untouched, except only the two-stage flow-shops are 
involved [13,25,28,4]. He et al. [13] first studied the m parallel identical two-stage flow-shop problem (m, 2)-PFS, motivated 

1 We note that there are sequences of work in developing faster PTASes, which are not the intended subject in this paper. The interested readers might 
refer to [16] for major references.

2 We do not list the detailed running time of these algorithms. Again, we note that there are sequences of work in developing faster PTASes, which are 
not the intended subject in this paper. The interested readers might refer to [16] for major references.



Download	English	Version:

https://daneshyari.com/en/article/6875455

Download	Persian	Version:

https://daneshyari.com/article/6875455

Daneshyari.com

https://daneshyari.com/en/article/6875455
https://daneshyari.com/article/6875455
https://daneshyari.com/

