Theoretical Computer Science ••• (••••) •••-•••

Contents lists available at ScienceDirect

Theoretical Computer Science

TCS:11149

www.elsevier.com/locate/tcs

Approximation algorithms for the scaffolding problem and its generalizations

Zhi-Zhong Chen^{a,*}, Youta Harada^a, Fei Guo^b, Lusheng Wang^{c,1}

^a Division of Information System Design, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan

^b School of Computer Science and Technology, Tianjin University, Tianjin, China

^c Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong

A R T I C L E I N F O

Article history: Received 17 July 2016 Received in revised form 5 February 2017 Accepted 16 March 2017 Available online xxxx

Keywords: Approximation algorithms Randomized algorithms Scaffolding Matchings

ABSTRACT

Scaffolding is one of the main stages in genome assembly. During this stage, we want to merge contigs assembled from the paired-end reads into bigger chains called *scaffolds*. For this purpose, the following graph-theoretical problem has been proposed: Given an edge-weighted complete graph *G* and a perfect matching *D* of *G*, we wish to find a Hamiltonian path *P* in *G* such that all edges of *D* appear in *P* and the total weight of edges in *P* but not in *D* is maximized. This problem is NP-hard and the previously best polynomial-time approximation algorithm for it achieves a ratio of $\frac{1}{2}$. In this paper, we design a new polynomial-time approximation algorithm achieving a ratio of $\frac{5-5\epsilon}{9-8\epsilon}$ for any constant $0 < \epsilon < 1$. Several generalizations of the problem have also been introduced in the literature and we present polynomial-time approximation algorithms for them that achieve better approximation ratios than the previous bests. In particular, one of the algorithms answers an open question.

 $\ensuremath{\textcircled{}^\circ}$ 2017 Elsevier B.V. All rights reserved.

1. Introduction

Sequencing the whole genome of an organism is a vital component for detailed molecular analysis of the organism, and genome projects are now underway or complete [8]. Unfortunately, with current genome-sequencing technologies, it is impossible to continuously read from one end of a long chromosome to the other. So, a commonly used method for sequencing a chromosome is to first randomly shear multiple copies of the chromosome into many small fragments of varying sizes, then accurately sequence the fragments to obtain *reads*, and further assemble the reads into a sequence of the whole chromosome. The assembling process typically consists of two steps. The first step is called *contigging*, where we use confident overlaps between the reads to piece together larger segments of continuous sequences called *contigs* (each of which consists of two strands, namely, the *forward strand* and the *reverse strand*). The second step is called *scaffolding*, where we link contigs together into *scaffolds* by using longer fragments of a known length whose ends are sequenced (called *paired-end reads*). A recent comprehensive evaluation of available software tools shows that scaffolding is still computationally intractable [6].

The scaffolding problem can be formulated as the problem of finding a special Hamiltonian path in an edge-weighted complete graph *G* as follows [7]. For each contig *c*, *G* has two vertices f_c and r_c , where f_c corresponds to the forward strand of *c* while r_c corresponds to the reverse strand of *c*. The edge { f_c , r_c } is assigned a weight of 0 in *G* and is called a

* Corresponding author.

E-mail addresses: zzchen@mail.dendai.ac.jp (Z.-Z. Chen), guofeieileen@163.com (F. Guo), cswangl@cityu.edu.hk (L. Wang).

¹ Also with University of Hong Kong Shenzhen Research Institute, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, PR China.

http://dx.doi.org/10.1016/j.tcs.2017.03.042 0304-3975/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: Z.-Z. Chen et al., Approximation algorithms for the scaffolding problem and its generalizations, Theoret. Comput. Sci. (2017), http://dx.doi.org/10.1016/j.tcs.2017.03.042

Doctopic: Algorithms, automata, complexity and games ARTICLE IN PRESS

2

TCS-11149

Z.-Z. Chen et al. / Theoretical Computer Science ••• (••••) •••-•••

dummy edge for convenience. Each non-dummy edge $\{u, v\}$ of *G* corresponds to a bundle of paired-end reads each of which connects strand *u* (of a contig *c*) with strand *v* (of another contig *c'*), and the weight of $\{u, v\}$ in *G* is equal to the size of the corresponding bundle. In case no such bundle exists for $\{u, v\}$, then the weight of $\{u, v\}$ in *G* is 0. Note that the set *D* of dummy edges is a perfect matching of *G*. A Hamiltonian path *P* in *G* is *D*-valid if *P* contains all dummy edges of *G*. Since *G* is a complete graph and *D* is a perfect matching of *G*, we can always transform *D* into a *D*-valid Hamiltonian path of *G* by adding edges of *G* to *D*. Given *G* and *D*, the objective is to compute a *D*-valid Hamiltonian path in *G* such that the total weight of edges in *P* is maximized over all *D*-valid Hamiltonian paths in *G*.

The scaffolding problem is NP-hard [1,2]. Indeed, the problem is APX-hard because the maximum asymmetric traveling salesman problem is APX-hard [9] and can be reduced to the scaffolding problem as follows. Given an edge-weighted digraph *G*, we construct an (undirected) graph *H* from *G* by splitting each vertex *u* of *G* into two vertices u_{in} and u_{out} so that (1) { u_{in}, u_{out} } is an edge (of weight 0) in both *H* and *D* and (2) each arc (u, v) in *G* is transformed into an edge { u_{out}, v_{in} } (of the same weight as (u, v)) in *H*. Mandric and Zelikovsky [7] propose two heuristics for the scaffolding problem. One of them is based on maximum-weight matching and the other is based on the greedy method. Although they claim that their heuristics perform well in practice, the heuristics are not shown to have a worst-case performance guarantee.

In order to take the desired structure of the genome (namely, the number of circular or linear chromosomes) into consideration, Chateau and Giroudeau [1,2] generalizes the scaffolding problem as follows. In addition to *G* and *D*, we are also given two nonnegative integers σ_p and σ_c . Instead of a single *D*-valid Hamiltonian path in *G*, we want to find a collection of exactly σ_p paths and exactly σ_c cycles such that the paths and cycles are disjoint and contain all edges of *D*. For convenience, we refer to such a collection as a *D*-valid (σ_p , σ_c)-cover of *G*. Note that a *D*-valid Hamiltonian path in *G* is just a *D*-valid (1, 0)-cover of *G*. Moreover, *G* has a *D*-valid (σ_p , σ_c)-cover if and only if $\sigma_p + \sigma_c \ge 1$ and $|D| \ge \sigma_p + 2\sigma_c$. [2]. So, we can hereafter assume that the input (*G*, *D*, σ_p , σ_c) always satisfies $\sigma_p + \sigma_c \ge 1$ and $|D| \ge \sigma_p + 2\sigma_c$. The new objective is to compute a *D*-valid (σ_p , σ_c)-cover *C* of *G* such that the total weight of edges in *C* is maximized over all *D*-valid (σ_p , σ_c)-covers of *G*. We call this generalization the generalized scaffolding problem (GSP for short).

In the special case of GSP where the input satisfies $|D| = \sigma_p + 2\sigma_c$, a *D*-valid (σ_p, σ_c) -cover of *G* is simply a collection of disjoint edges and cycles with 4 edges and hence can be found by computing a maximum-weight matching in a suitably constructed graph [2]. Moreover, in the special case where $(\sigma_p, \sigma_c) = (0, 1)$, a very simple $O(n^3)$ -time approximation algorithm achieving a ratio of $\frac{1}{2}$ can be designed [1,2], where *n* is the number of vertices in the input graph. This algorithm is also applicable to the scaffolding problem, i.e., the special case of GSP where $(\sigma_p, \sigma_c) = (1, 0)$. Furthermore, in the special case where the input satisfies $|D| \ge 2(\sigma_p + 2\sigma_c)$, an $O(n^3)$ -time approximation algorithm achieving a ratio of $\frac{1}{3}$ can be designed [2]. However, the approximability of the remaining case where $\sigma_p + 2\sigma_c < |D| < 2(\sigma_p + 2\sigma_c)$ was left as an open question in [2].

In this paper, we improve the algorithmic results in [1,2] and answer the above open question in [2]. More specifically, we first design a new $O(n^3)$ -time approximation algorithm for the scaffolding problem that achieves a ratio of $\frac{5-5\epsilon}{9-8\epsilon}$ for any constant $0 < \epsilon < 1$. This is done by first designing a randomized algorithm and then derandomizing it. The randomized algorithm finds two *D*-valid Hamiltonian paths and outputs the better one between the two paths. The randomized algorithm is inspired by the algorithm in [5] for the maximum traveling salesman problem. We also show that our analysis is almost tight. We then design an $O(n^3)$ -time approximation algorithm for GSP that *always* achieves a ratio of $\frac{1}{3}$. A simple but crucial idea behind the algorithm is to first compute a maximum-weight matching *M* in the input graph *G* such that $M \cap D = \emptyset$ and $|M| = |D| - \sigma_p$. With a minor modification, the algorithm achieves a ratio of $\frac{1}{2}$ for the special case of GSP where $|D| \ge \sigma_p + 3\sigma_c$. With another minor modification, the algorithm achieves a ratio of $\min\left\{\frac{2}{5}, \frac{1+2\epsilon}{3}\right\}$ for the special case where $|D| \ge \sigma_p + (2 + \epsilon)\sigma_c$ for any constant $0 < \epsilon < 1$.

We also modify the approximation algorithm for the scaffold problem so that it works for two special cases of GSP. For the special case of GSP where the input satisfies $|D| \ge 9(\sigma_p + \sigma_c)$ (respectively, $|D| \ge 6(\sigma_p + \sigma_c)$), the modified algorithm runs in $O\left(\left(\sigma_c^2 + 1\right)n^3\right)$ time and achieves a ratio of $\frac{5-4\epsilon}{9}$ (respectively, $\frac{7-6\epsilon}{13}$) for any constant $0 < \epsilon < 1$. Weller et al. [10] defined a different generalization of the scaffolding problem as follows. The input is the same as to

Weller et al. [10] defined a different generalization of the scaffolding problem as follows. The input is the same as to GSP but without the condition $|D| \ge \sigma_p + 2\sigma_c$, and the objective is to find a *D*-valid (σ'_p, σ'_c) -cover *C* of *G* with $\sigma'_p \le \sigma_p$ and $\sigma'_c \le \sigma_c$ such that the total weight of edges in *C* is maximized over all *D*-valid (σ''_p, σ''_c) -covers of *G* with $\sigma''_p \le \sigma_p$ and $\sigma''_c \le \sigma_c$. We call this generalization the *loosely generalized scaffolding problem* (LGSP for short). The previously best approximation algorithm for LGSP achieves a ratio of $\frac{1}{2}$ [10] and runs in $O(n^3)$ time. In this paper, we show that the approximation ratio and the time complexity.

The remainder of this paper is organized as follows. Section 2 gives basic definitions that will be used in the remainder of the paper. Section 3 presents approximation algorithms for the scaffolding problem, Section 4 presents approximation algorithms for LGSP, and Section 5 presents approximation algorithms for GSP and its special cases.

2. Basic definitions

Throughout this paper, a graph means an undirected graph without parallel edges or self-loops. Let *G* be a graph. We denote the vertex set of *G* by V(G), and denote the edge set of *G* by E(G). For a subset *U* of V(G), G[U] denotes the graph

Download English Version:

https://daneshyari.com/en/article/6875465

Download Persian Version:

https://daneshyari.com/article/6875465

Daneshyari.com