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The present paper investigates the quality of numberings measured in three different ways: 
(a) the complexity of finding witnesses of Kleene’s Recursion Theorem in the numbering; 
(b) for which learning notions from inductive inference the numbering is an optimal 
hypothesis space; (c) the complexity needed to translate the indices of other numberings 
to those of the given one. In all three cases, one assumes that the corresponding witnesses 
or correct hypotheses are found in the limit and one measures the complexity with 
respect to the best criterion of convergence which can be achieved. The convergence 
criteria considered are those of finite, explanatory, vacillatory and behaviourally correct 
convergence. The main finding is that the complexity of finding witnesses for Kleene’s 
Recursion Theorem and the optimality for learning are independent of each other. 
Furthermore, if the numbering is optimal for explanatory learning and also allows to solve 
Kleene’s Recursion Theorem with respect to explanatory convergence, then it also allows 
to translate indices of other numberings with respect to explanatory convergence.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In constructive mathematics, one not only asks whether a certain object exists but also how complex it is to find or 
construct this object. Hayashi [15] studied this question of finding or constructing objects as a limiting process where 
the solution (or programs to compute the solution) are approximated in the limit in the same way as inductive inference 
approximates the program of a concept to be learnt. In other words, Hayashi [15] carried over the convergence criteria 
from inductive inference and applied them to finding solutions to specific mathematical tasks which cannot be carried out 
directly but need a limiting process for finding the solution.

Case and Moelius [10,25] applied this idea to the task of finding fixed points in numberings. From the beginnings of 
recursion theory, it is known that acceptable numberings of all partial recursive functions admit fixed-points, that is, for 
every recursive function f there is an e with ϕ f (e) = ϕe (where ϕe denotes the e-th function in the acceptable numbering 
ϕ). This means in particular that one cannot modify the behaviour of programs systematically; all methods to modify the 
program of functions fail to have an effect on some program e [33]. In their work on this topic, Case and Moelius [10]
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noted that Kleene’s original version [23] of the fixed point theorem – known as Kleene’s Recursion Theorem (KRT) – is 
in many applications much more useful than Rogers’ variant. Informally, Kleene’s Recursion Theorem says that for every 
partial recursive function η with two inputs there is an index e such that, for all x, ϕe(x) = η(e, x). Moelius [25] studied in 
detail which numberings ψ satisfy KRT and, if they do, how complex it is to obtain the fixed point e as above. The above 
mentioned work of Moelius motivated choosing KRT rather than the popular fixed point theorem as the basic notion for the 
present paper.

A numbering is a uniformly partially recursive listing of all partial recursive functions with one input. It depends on 
the numbering ψ whether it satisfies KRT and, in the case that it does, how complex is the process to find, for any given 
f , the fixed point e with ψe = f (e, ·). The complexity of this process is measured in terms of the convergence criterion 
(finite, explanatory, vacillatory or behaviourally correct, see formal definitions in Section 2) used to find such a fixed point 
for all recursive functions f . These properties permit to classify numberings as those which obey FinKrt, ExKrt, VacKrt and 
BcKrt, respectively. Similarly one can measure the numberings ψ with respect to the question whether they are optimal for 
the corresponding learning criteria I; here ψ is optimal for I-learning iff every I-learnable class can be learnt using the 
numbering ψ as hypothesis space. A third way to classify numberings is to say that a numbering ψ is I-acceptable iff for 
every further numbering ϕ , one can translate each index e of ϕ into a sequence of ψ-indices which converge to ψ-indices 
for ϕe in the way prescribed by I .

Building on prior work of Case and Moelius [10,25], the present work relates three ways to categorise quality of num-
berings (degree of effectiveness of KRT, degree of optimality of the numbering for learning, degree of acceptability of the 
numbering) with each other. The results show that in general, one can find arbitrary combinations of the degrees of the 
effectiveness of KRT and the degrees of optimality of the numbering. Furthermore, for I being finite, explanatory or vacilla-
tory convergence, numberings which are optimal for I learning and permit I-effective KRT are also I-acceptable. This means, 
that KRT and optimality are complementary independent properties which together give that the numbering is acceptable. 
This is now described more formally and precisely in the remaining part of the paper.

2. Technical definitions and overview

Recursion-theoretic concepts not covered below are treated as by Rogers [33]; the interested reader might also consult 
the books of Calude [5], Downey and Hirschfeldt [12], Nies [26], Odifreddi [27,28], Li and Vitányi [24] and Soare [35] for 
further background on recursion theory and Kolmogorov complexity. Furthermore, the interested reader is referred to the 
two editions of “Systems that Learn” (first edition by Osherson, Stob and Weinstein [29] and second by Jain, Osherson, Royer 
and Sharma [17]) for background on inductive inference.

Let N be the set of natural numbers, {0, 1, 2, . . .}. Lowercase italicised letters range either over elements of N (such as a, 
b, c, d, e, i, j, k, m, n, x, y, z) or over functions (such as f , g , h); it is always clear from the context which of the two cases 
applies. Uppercase italicised letters (such as A, B , D , E , K ) range over subsets of N, unless stated otherwise. Lowercase 
Greek letters (such as α, β , γ , ψ , ϕ , φ, θ ) range over partial functions from N to N, unless stated otherwise.

For each non-empty X ⊆ N, min X denotes the minimum element of X , where min∅ = ∞. For each non-empty, finite 
X ⊆ N, max X denotes the maximum element of X ; furthermore, max ∅ = −1. The finite sets can be indexed by canonical 
indices where the e-th finite set De is chosen such that D0 = ∅ and, for e > 0, De is the unique set satisfying 

∑
d∈De

2d = e.
Let 〈·, ·〉 be Cantor’s pairing function: 〈x, y〉 = (x + y)(x + y +1)/2 + y. The pairing function is a recursive, order preserving 

bijection N ×N → N [33, page 64]; here order preserving means that x ≤ x′ ∧ y ≤ y′ ⇒ 〈x, y〉 ≤ 〈x′, y′〉. Note that 〈0,0〉 = 0
and, for each x and y, max{x, y} ≤ 〈x, y〉.

For each one-argument partial function α and x ∈ N, α(x) ↓ denotes that α(x) converges; α(x) ↑ denotes that α(x)
diverges. So, for example, λx � ↑ denotes the everywhere divergent partial function.

For each partial function f , rng( f ) denotes the range of f . A text is a total (not necessarily recursive) function from N
to N ∪ {#}. For each text T and i ∈ N, T [i] denotes the initial segment of T of length i: T (0)T (1) . . . T (i − 1). SEQ denotes 
the set of all finite initial segments of all texts. For each text T and partial function α, T is a text for α iff rng(T ) − {#} is 
the graph of α as coded using the pairing function 〈·, ·〉:

rng(T ) − {#} = {〈x, y〉 : α(x) = y ∧ x, y ∈N}. (1)

For a total function f , one often identifies f with its canonical text, that is, the text T with T (i) = 〈i, f (i)〉. Thus, f [n]
represents the initial segment of length n of this canonical text.

Let Sconst = { f : (∃c)(∀x)[ f (x) = c]} denote the class of all constant functions.
Let P be the collection of all partial recursive functions from N to N. For each ψ ∈ P and p ∈ N, let ψp be shorthand 

for ψ(〈p, ·〉). An effective numbering of P is a ψ ∈P such that

(∀α ∈ P)(∃p ∈N)[ψp = α]. (2)

The present work only deals with effective numberings of partial recursive functions; hence, for notational simplicity, the 
requirements “(∀α ∈ P)(∃p ∈ N)[ψp = α]” and that the “numbering is effective” are usually assumed without being ex-
plicitly postulated. For all ψ and p, s, if x < s and ψp(x) halts within s steps with output y, then let ψp,s(x) = y; else let 
ψp,s(x) =↑. Note that while it is in general undecidable whether ψp(x) is defined, it is decidable whether ψp,s(x) is defined 
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