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Given a simple graph G with n vertices and a natural number i ≤ n, let LG (i) be the 
maximum number of leaves that can be realized by an induced subtree T of G with i
vertices. We introduce a problem that we call the leaf realization problem, which consists 
in deciding whether, for a given sequence of n + 1 natural numbers (�0, �1, . . . , �n), there 
exists a simple graph G with n vertices such that �i = LG (i) for i = 0, 1, . . . , n. We present 
basic observations on the structure of these sequences for general graphs and trees. In the 
particular case where G is a caterpillar graph, we exhibit a bijection between the set of the 
discrete derivatives of the form (�LG(i))1≤i≤n−3 and the set of prefix normal words.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Subtrees of graphs are the object of intensive investigation from several communities. For instance, frequent subtrees 
mining [1] were studied in the data mining community; induced subtrees [2] are useful in information retrieval [3], and 
maximum leaf spanning subtrees [4,5] aroused the interest of the telecommunication network community [6,7]. In this 
paper, we focus on induced subtrees that have a maximal number of leaves. More precisely, for a graph G , let LG(i) be the 
maximum number of leaves that can be realized by an induced subtree of G with exactly i vertices. The induced subtrees 
having the maximum number of leaves are called fully leafed and already appear in [8,9]. Remarkable structures on regular 
lattices are presented in [8]. In [9], the decision problem called Leafed Induced Subtree problem and its associated optimization 
problem were introduced:

Problem 1.1 (Leafed Induced Subtree problem (LIS)). Given a graph G and two nonnegative integers i and �, does there exist 
an induced subtree of G with i vertices and � leaves?
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Problem 1.2 (Maximum Leafed Induced Subtree problem (MLIS)). Given a graph G on n vertices, what is the maximum 
number of leaves, LG (i), that can be realized by an induced subtree of G with i vertices, for i ∈ {0, 1, . . . , n}?

First, the authors of [9] proved that the problem LIS is NP-complete and fixed parameter intractable.4 To tackle the MLIS
problem, they provided a branch and bound algorithm with experimental results supporting its efficiency. When restricted 
to the case of trees, they showed that the MLIS problem is polynomial using a dynamic programming strategy.

In this paper, we are interested in studying the properties of the finite sequence LG (i)i=0,1,...,n , called the leaf sequence 
of G , where n is the number of vertices of G . Naturally, we introduce the Leaf Realization Problem:

Problem 1.3 (Leaf Realization Problem). Given a sequence of n + 1 natural numbers (�0, �1, . . . , �n), does there exist a graph 
G with n vertices such that

(LG(0), LG(1), . . . , LG(n)) = (�0, �1, . . . , �n)?

Problem 1.3 shows many similarities with other famous realization problems investigated more than 50 years ago. For 
instance, considerable attention was devoted to the graph realization problem [11], which consists in deciding whether a 
finite sequence of natural numbers (d1, . . . , dn) is the degree sequence of some labeled simple graph. In the case where the 
answer is positive, the sequence (d1, . . . , dn) is called a graphic sequence. The problem was proven solvable in polynomial 
time [11–13]. In particular, it amounts to verifying n inequalities and whether the sum of degrees is even [11]. Several 
variations of the graph realization problem have been investigated, such as the bipartite realization problem [14,15] and the 
digraph realization problem [16–20].

Although we do not succeed, in this paper, in providing a complete answer to Problem 1.3, we solve the following 
subproblem, which casts some light on the structure of leaf sequences:

Problem 1.4 (Leaf Realization Problem for Caterpillar Graphs). Given a sequence of n + 1 natural numbers (�0, �1, . . . , �n), does 
there exist a caterpillar graph C of n vertices such that

(LC (0), LC (1), . . . , LC (n)) = (�0, �1, . . . , �n)?

It is worth mentioning that, contrary to the approaches used in [11–20], our solution relies on concepts studied in combi-
natorics on words. In particular, it turns out that the leaf sequences of caterpillar graphs have a surprising link with prefix 
normal words that were introduced by Fici and Lipták [21] and then further investigated by Burcsi et al. [22,23]. The defining 
property of these binary words is that their prefixes contain at least as many 1’s as any of their factors of the same length. 
Moreover, for any binary word w , there is a prefix normal word w ′ of the same length such that for any integer k, the 
maximal number of 1’s in a factor of length k coincide for w and w ′ . Such w ′ is called the prefix normal form of w .

If we consider the sequences of differences between consecutive elements of leaf sequences, also called the discrete 
derivatives of the leaf sequences, then we prove that, for caterpillar graphs, the set

�LC = {�LC : C is a caterpillar}
of discrete derivatives of leaf sequences of caterpillar graphs is precisely the set of prefix normal words. To prove this result, 
we introduce the notion of reading caterpillars of a word. The link between binary words and their prefix normal forms 
is then mirrored in terms of their reading caterpillars. Two words with the same prefix normal form are such that their 
reading caterpillars have the same leaf functions. This is yet another example of the fruitful interaction between graph 
theory and combinatorics on words (see for example [24,25]).

The manuscript is organized as follows. Preliminary notions are recalled in Section 2. We introduce the notions of leaf 
functions, leaf sequences and their discrete derivatives in Section 3. We develop some tools in Section 4 that are useful for 
the proof of our main theorems. Section 5 and 6 are devoted to our main theorems which address the relationship between 
caterpillar graphs, prefix normal words and prefix normal forms. We conclude with some perspectives on future work in 
Section 7.

2. Preliminaries

We start by recalling basics definition of graphs. We refer the reader to [26] for an introduction to this subject. All graphs 
considered in this text are simple and undirected. Let G = (V , E) be a graph with vertex set V and edge set E . The degree
of a vertex u is the number of vertices that are adjacent to u and is denoted by deg(u). We denote by |G| or |V | the total 
number of vertices of G , which is called the size of G . For U ⊆ V , the subgraph of G induced by U , denoted by G[U ], is the 

4 Assuming that the class of fixed parameter problems is distinct from the first complexity class W [1] of the W -hierarchy introduced by Downey and 
Fellows [10].
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