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Abstract

We show that it is undecidable whether or not an injective rational
function (realized by a finite transducer) f : A∗ → A∗ has a fixed point.
The proof applies undecidability of the Post’s Correspondence Problem
for injective morphisms. As a corollary we obtain that the existence of a
fixed point of injective computable functions is undecidable.

1 Introduction

We study the fixed point problem of functions starting from the finitely generated
word semigroups:

Problem 1. Let A be a finite alphabet. Let f : A∗ → A∗ be a function. Does there
exists a word w such that f (w) = w.

We shall prove that the fixed point problem is undecidable for functions
defined by finite transducers, that is, functions defined by finite automata with
output. Our result also gives a corollary for computable (recursive) functions
over natural numbers.

It easily follows from the basic computability results on Turing machines
that the existence of a fixed point is undecidable for general functions. Indeed,
this follows from a modification of the classical diagonal argument or by the
halting problem, i.e., by defining a function f in a way that it checks for any
input i whether the ith Turing machine halts on its code, one can transform f
into a function h having fixed point i if and only if the ith Turing machine halts
on i. However, in such as construction the function h is clearly noncomputable.
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