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If S and T are infinite sequences over a finite alphabet, then the lower and upper 
mutual dimensions mdim(S : T ) and Mdim(S : T ) are the upper and lower densities of 
the algorithmic information that is shared by S and T . In this paper we investigate the 
relationships between mutual dimension and coupled randomness, which is the algorithmic 
randomness of two sequences R1 and R2 with respect to probability measures that may 
be dependent on one another. For a restricted but interesting class of coupled probability 
measures we prove an explicit formula for the mutual dimensions mdim(R1 : R2) and 
Mdim(R1 : R2), and we show that the condition Mdim(R1 : R2) = 0 is necessary but not 
sufficient for R1 and R2 to be independently random.
We also identify conditions under which Billingsley generalizations of the mutual dimen-
sions mdim(S : T ) and Mdim(S : T ) can be meaningfully defined; we show that under these 
conditions these generalized mutual dimensions have the “correct” relationships with the 
Billingsley generalizations of dim(S), Dim(S), dim(T ), and Dim(T ) that were developed 
and applied by Lutz and Mayordomo; and we prove a divergence formula for the values of 
these generalized mutual dimensions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Algorithmic information theory combines tools from the theory of computing and classical Shannon information theory 
to create new methods for quantifying information in an expanding variety of contexts. Two notable and related strengths 
of this approach that were evident from the beginning [11] are its abilities to quantify the information in and to assess the 
randomness of individual data objects.

Some useful mathematical objects, such as real numbers and execution traces of nonterminating processes, are intrinsi-
cally infinitary. The randomness of such objects was successfully defined very early [18] but it was only at the turn of the 
present century [15,14] that ideas of Hausdorff were reshaped in order to define effective fractal dimensions, which quan-
tify the densities of algorithmic information in such infinitary objects. Effective fractal dimensions, of which there are now 
many, and their relations with randomness are now a significant part of algorithmic information theory [6].
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Many scientific challenges require us to quantify not only the information in an individual object, but also the information 
shared by two objects. The mutual information I(X; Y ) of classical Shannon information theory does something along these 
lines, but for two probability spaces of objects rather than for two individual objects [5]. The algorithmic mutual information
I(x : y), defined in terms of Kolmogorov complexity [13], quantifies the information shared by two individual finite objects 
x and y.

The present authors recently developed the mutual dimensions mdim(x : y) and Mdim(x : y) in order to quantify the 
density of algorithmic information shared by two infinitary objects x and y [4]. The objects x and y of interest in [4] are 
points in Euclidean spaces Rn and their images under computable functions, so the fine-scale geometry of Rn plays a major 
role there.

In this paper we investigate mutual dimensions further, with objectives that are more conventional in algorithmic infor-
mation theory. Specifically, we focus on the lower and upper mutual dimensions mdim(S : T ) and Mdim(S : T ) between two 
sequences S, T ∈ �∞ , where � is a finite alphabet. (If � = {0, 1}, then we write C for the Cantor space �∞ .) The definitions 
of these mutual dimensions, which are somewhat simpler in �∞ than in Rn , are implicit in [4] and explicit in section 2
below.

Our main objective here is to investigate the relationships between mutual dimension and coupled randomness, which is 
the algorithmic randomness of two sequences R1 and R2 with respect to probability measures that may be dependent on 
one another. In section 3 below we formulate coupled randomness precisely, and we prove our main theorem, Theorem 3.8, 
which gives an explicit formula for mdim(R1 : R2) and Mdim(R1 : R2) in a restricted but interesting class of coupled proba-
bility measures. This theorem can be regarded as a “mutual version” of Theorem 7.7 of [15], which in turn is an algorithmic 
extension of a classical theorem of Eggleston [7,2]. We also show in section 3 that Mdim(R1 : R2) = 0 is a necessary, but 
not sufficient condition for two random sequences R1 and R2 to be independently random.

In 1960 Billingsley investigated generalizations of Hausdorff dimension in which the dimension itself is defined “through 
the lens of” a given probability measure [1,3]. Lutz and Mayordomo developed the effective Billingsley dimensions dimν (S)

and Dimν(S), where ν is a probability measure on �∞ , and these have been useful in the algorithmic information theory 
of self-similar fractals [17,8].

In section 4 we investigate “Billingsley generalizations” mdimν(S : T ) and Mdimν(S : T ) of mdim(S : T ) and Mdim(S : T ), 
where ν is a probability measure on �∞ ×�∞ . These turn out to make sense only when S and T are mutually normalizable, 
which means that the normalizations implicit in the fact that these dimensions are densities of shared information are the 
same for S as for T . We prove that, when mutual normalizability is satisfied, the Billingsley mutual dimensions mdimν (S : T )

and Mdimν(S : T ) are well behaved. We also identify a sufficient condition for mutual normalizability, make some prelim-
inary observations on when it holds, and prove a divergence formula, analogous to a theorem of [16], for computing the 
values of the Billingsley mutual dimensions in many cases.

2. Mutual dimension in Cantor spaces

In [4] the authors defined and investigated the mutual dimension between points in Euclidean space. The purpose of 
this section is to develop a similar framework for the mutual dimension between sequences.

For k > 1, let � = {0, 1, . . .k − 1} be our alphabet, �∗ be the set of all strings over �, and si be the ith string in the 
standard enumeration of �∗ . Also, let �∞ denote the set of all k-ary sequences over �. For S, T ∈ �∞ , the notation (S, T )

represents the sequence in (� × �)∞ obtained after pairing each symbol in S with the symbol in T located at the same 
position. For S ∈ �∞ , let

αS =
∞∑

i=0

S[i]k−(i+1) ∈ [0,1]. (1)

Informally, we say that αS is the real representation of S . Note that, in this section, we often use the notation S � r to mean 
the first r ∈ N symbols of a sequence S .

We begin by reviewing some definitions and theorems of algorithmic information theory. Although any “flavor” of Kol-
mogorov complexity suffices for our purposes here, the ability to concatenate programs without explicit coding makes the 
prefix Kolmogorov complexity most convenient for us. Accordingly, every Turing machine here is assumed to be a prefix 
machine, i.e., a Turing machine M that takes two input strings, a program π ∈ {0, 1}∗ and a side information string w ∈ �∗ , 
and has the property that, for each w ∈ �∗ , the set of all π ∈ {0, 1}∗ on which M(π, w) halts is prefix-free.

Definition. The conditional (prefix) Kolmogorov complexity of u ∈ �∗ given w ∈ �∗ with respect to a Turing machine M is

K M(u | w) = min{|π | ∣∣π ∈ {0,1}∗ and M(π, w) = u}.

We define the (prefix) Kolmogorov complexity of u ∈ �∗ with respect to a Turing machine M by K M(u) = K M(u | λ), where 
λ is the empty string. In general, we write M(π) for M(π, λ).
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