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In this article we study the treewidth of the display graph, an auxiliary graph structure 
obtained from the fusion of phylogenetic (i.e., evolutionary) trees at their leaves. Earlier 
work has shown that the treewidth of the display graph is bounded if the trees are in 
some formal sense topologically similar. Here we further expand upon this relationship. 
We analyze a number of reduction rules, commonly used in the phylogenetics literature 
to obtain fixed parameter tractable algorithms. In some cases (the subtree reduction) 
the reduction rules behave similarly with respect to treewidth, while others (the cluster
reduction) behave very differently, and the behavior of the chain reduction is particularly 
intriguing because of its link with graph separators and forbidden minors. We also show 
that the gap between treewidth and Tree Bisection and Reconnect (TBR) distance can be 
infinitely large, and that unlike, for example, planar graphs the treewidth of the display 
graph can be as much as linear in its number of vertices. A number of other auxiliary 
results are given. We conclude with a discussion and list a number of open problems.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Phylogenetic trees are used extensively within computational biology to model the history of a set of species (known as 
taxa) X ; the internal nodes represent evolutionary diversification events such as speciation [39]. Within the field of phy-
logenetics there has long been interest in quantifying the topological dissimilarity of phylogenetic trees and understanding 
whether this dissimilarity is biologically significant. This has led to the development of many incongruency measures such as 
Subtree Prune and Regraft (SPR) distance and Tree Bisection and Reconnect (TBR) distance [1]. Most of these measures are
NP-hard to compute and this is indeed true for SPR, TBR distances. More recently such measures have also attracted atten-
tion because of their importance in methods which merge dissimilar trees into phylogenetic networks; phylogenetic networks 
are simply the generalization of trees to graphs [31].

Parallel to such developments there has been growing interest in the role of the graph-theoretic parameter treewidth
within phylogenetics. Treewidth is an intensely studied parameter in algorithmic graph theory and it indicates, at least in 
an algorithmic sense, how far an undirected graph is from being a tree (see e.g. [7,11,12] for background). The enormous 
focus on treewidth is closely linked to the fact that a great many NP-hard optimization problems become (fixed parameter) 
tractable on graphs of bounded treewidth [18]. A seminal paper by Bryant and Lagergren [16] linked phylogenetics to 
treewidth by demonstrating that, if a set of trees (not necessarily all on the same set of taxa X) can simultaneously be 
topologically embedded within a single “supertree”—a property known as compatibility—then an auxiliary graph known 
as the display graph has bounded treewidth. Since this paper a small but growing number of papers at the interface of 
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graph theory and phylogenetics have explored this relationship further. Much of this literature focuses on the link between 
compatibility and (restricted) triangulations of the display graph (e.g. [41,29,24,42]), but more recently the algorithmic 
dimension has also been tentatively explored [5,27,33]. In the spirit of the original Bryant and Lagergren paper, which 
used heavy meta-theoretic machinery to derive a theoretically efficient algorithm for the compatibility problem, Kelk et al.
[34] showed that the treewidth of the display graph of two trees is bounded as a linear function of the TBR distance 
(equivalently, the size of a Maximum Agreement Forest—MAF [1]) between the two trees, and then used this insight to 
derive theoretically efficient algorithms for computation of many different incongruency measures. In that article it was 
empirically observed that in practice the treewidth of the display graph is often much smaller than the TBR distance (and 
thus also the many incongruency measures for which TBR is a lower bound). This raises two natural questions. First, in how 
far can this apparently low treewidth be exploited to yield genuinely practical dynamic programming algorithms running 
over low-width tree decompositions? There has been some progress in this direction in the compatibility literature (notably, 
[5]) but there is still much work to be done. Second, how exactly does the treewidth of the display graph behave, both in 
the sense of extremal results (e.g. how large can the treewidth of a display graph get?) and in the sense of understanding 
when and why the treewidth differs significantly from measures such as TBR.

Here we focus primarily on the second question. We begin with a more structural perspective. We show that, given an 
arbitrary (multi)graph G on n vertices with maximum degree k, one can construct two unrooted binary trees T1(G) and 
T2(G) such that their display graph D = D(T1(G), T2(G)) has at most O (nk) vertices and edges and G is a minor of D . We 
combine this with the known fact that cubic expanders (a special family of 3-regular graphs) on n vertices have treewidth 
�(n) to yield the result that display graphs on n vertices can also (in the worst case) have treewidth linear in n. This 
contrasts, for example, with planar graphs on n vertices which have treewidth at most O (

√
n) [20]. We also show how a 

more specialized construction can be used to embed arbitrary grid minors [17] into display graphs with a much smaller 
inflation in the number of vertices and edges.

We then continue by analyzing how reduction rules often used in the computation of incongruency measures impact 
upon the treewidth of the display graph. Not entirely surprisingly the common pendant subtree reduction rule [1] is shown 
to preserve treewidth. The cluster reduction [4,36,14], however, behaves very differently for treewidth than for many other 
incongruency measures. Informally speaking, if both trees can be split by deletion of an edge into two subtrees on X ′
and X ′′ , many incongruency measures combine additively around this common split, while treewidth behaves (up to additive 
terms) like the maximum function. We use this later in the article to explicitly construct a family of tree pairs such that 
the treewidth of their display graph is 3, but the TBR distance of the trees (and their MP distance—a measure based on 
the phylogenetic principle of parsimony [25,37,33]) grows to infinity. The third reduction rule we consider is the chain rule, 
which collapses common caterpillar-like regions of the trees into shorter structures. For incongruence measures it is often 
the case that truncation of such chains to O (1) length preserves the measure [1,15,45], although sometimes the weaker 
result of truncation to length f (k) [44,43] (for some function that depends only on the incongruency parameter k) is the 
best known. We show that truncation of common chains to length f (t w), where t w is the treewidth of the display graph, 
indeed preserves treewidth; this uses asymptotic results on the number of vertices and edges in forbidden minors for 
treewidth. Proving that truncation to O (1)-length preserves treewidth remains elusive; we prove the intermediate result 
that truncation to length 2 can cause the treewidth to decrease by at most 1. The case when the chain is not a separator of 
the display graph seems to be a particularly challenging bottleneck in removing the “−1” term from this result. Although 
intuitively reasonable, it remains unclear whether truncation to length O (1) is treewidth-preserving, for some universal 
constant.

In the last two mathematical sections of the paper we prove that, if two trees have TBR- or MP-distance 1, then the 
treewidth of their display graph is 3. However, the converse certainly does not hold: we construct the aforementioned 
“infinite gap” examples where the display graph has treewidth 3 but both TBR distance and MP-distance spiral off to 
infinity.

Finally, we reflect on the wider context of these results and discuss a number of open problems.
In conclusion, we observe that for (algorithmic) graph theorists the interface between treewidth and phylogenetics con-

tinues to yield many new questions which will likely require a new “phylo-algorithmic” graph theory to be answered. For 
phylogeneticists the appeal remains structural-algorithmic: can we convert the apparently low treewidth of display graphs 
into competitive, or even superior, algorithms for computation of incongruency measures?

2. Preliminaries

An unrooted binary phylogenetic tree T on a set of leaf labels (known as taxa) X is an undirected tree where all internal 
vertices have degree three and the leaves are bijectively labeled by X . If we (exceptionally) allow some internal vertices of 
T to have degree two, then we call these vertices roots (abusing slightly the usual root meaning). When it is understood 
from the context we will often drop the prefix “unrooted binary phylogenetic” for brevity.

Let Y ⊆ X . Then, for a tree T on X we denote by T |Y the tree which is obtained by forming a minimal subgraph T ′ of 
T that spans all leaves labeled by Y , and suppressing any vertices of degree 2.

In this manuscript the display graph of two binary phylogenetic trees plays a central role (Fig. 1):
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