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Let B be a set of b blue points and R be a set of r red points in the plane. In this paper 
we study the problem of finding rectangles that contain the maximum number of blue 
points without containing any red points, known as the maximum-box problem. First we 
study this problem for axis-aligned rectangles, and propose an exact worst-case optimal 
O (r2 + rb + b log b) time algorithm using O (r + b) space to find all maximum boxes. 
We also provide a 2-approximation algorithm running in O ((r + b) log(r + b)) time and 
using O (r + b) space to find a single maximum box in the axis-aligned case. Then we 
generalize the exact algorithm for the axis-aligned case to find all arbitrarily oriented 
maximum boxes leading to a worst-case optimal O ((r + b)2(r + log b)) time algorithm 
using O ((r + b)2) space to solve the problem. We conclude the paper by discussing time 
and space trade-offs. Our results improve the previously best known solutions to the 
maximum-box problem.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Given a set B of b blue points and a set R of r red points, in the maximum-box problem the goal is to find a rectangular 
box BX so that BX ∩ R = ∅ and the cardinality of BX ∩ B is maximized. Each box BX satisfying this condition can be 
enlarged so that its sides touch red points or reach the boundary of the bounding box of B ∪ R . Hence, the maximum-box 
problem can be seen as the problem of finding rectangles that contain the maximum number of blue points, and can contain 
red points only on the boundary. From now on, we call such rectangles maximum blue rectangles or M B Rs for short. The 
maximum-box problem finds applications in data analysis [8], where the goal is to find patterns that intersect exactly one of 
the given two sets. A study of criteria for selecting the most suitable patterns for classification of data using logical analysis 
has shown that the best results are achieved by maximal boxes [9]. This problem has also attracted attentions from the 
view point of computer graphics [7]. The maximum box problem has been studied for axis-aligned and arbitrarily oriented 
rectangles.

For axis-aligned rectangles, the maximum-box problem was first studied by Eckstein et al. [8] for arbitrary dimension d. 
They proved that the problem is NP-hard when d is a part of input. For the maximum-box problem in the plane, which is 
the topic of our paper, the following results are known. Segal [11] gave an O (b2(b + r)(log4 b + log3 r log b)) time algorithm, 
using O (r + b) space, to find the smallest area M B R . Later, Liu and Nediak [10] proposed an O (r2 log r + rb + b log b) time 
algorithm, using O (r + b) space, to compute all M B Rs. They also provided a 2-approximation algorithm (the number of 
blue points is approximated) running in O ((r + b) log2(r + b)) time and using O (r + b) space to find an M B R . Backer and 
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Fig. 1. Partitioning M(B ∪ R) into three regions R1, R2, and R3, and the corresponding staircases. The shaded region shows a P M B R that has lt on the 
left side and is constructed by extension of a step of the floor. (For interpretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

Keil [1], presenting an �(r2) lower bound on the number of axis-aligned M B Rs, proposed an O ((r + b) log3(r + b)) time 
algorithm, using O ((r + b) log(r + b)) space, to compute a single M B R . However, reducing the logarithmic gap either in the 
space complexity of the algorithm of Backer and Keil [1] and proposing a linear-space algorithm to compute an M B R , or in 
the time complexity of the algorithm of Liu and Nediak [10] and proposing a worst-case optimal quadratic time algorithm 
to compute all axis-aligned M B Rs was left open. Recently, Barbay et al. [3] have proposed a divide-and-conquer algorithm 
that can find an axis-aligned M B R in O ((r + b)2) time and O (r + b) space.

For arbitrarily oriented rectangles, Bereg et al. [4] have recently proposed an O ((r + b)2(r log r + r log b)) time algorithm, 
using O (r2 + rb) space, to compute all arbitrarily oriented M B Rs in the plane. They have also provided a 2-approximation 
algorithm to find a single arbitrarily oriented M B R .

In this paper, first we study the maximum-box problem in the plane for axis-aligned rectangles. We propose a worst-case 
optimal O (r2 +rb +b log b) time algorithm, using O (r +b) space, to compute all M B Rs in this case, reducing the logarithmic 
gap that exists in the literature [10]. In comparison with the divide-and-conquer algorithm of Barbay et al. [3], our solution 
uses a simple plane sweep algorithm. Rather than computing a single M B R our algorithm finds all M B Rs. It provides an 
improved approximation algorithm to find an axis-aligned M B R , and can be used as a basis to design an improved algorithm 
to compute all arbitrarily oriented M B Rs. Hence, based on this algorithm we provide a 2-approximation algorithm running 
in O ((r+b) log(r+b)) time and using O (r+b) space to find an axis-aligned M B R , improving the result of [10]. Moreover, we 
generalize our algorithm for the axis-aligned case to the arbitrarily oriented case, and propose an O ((r +b)2(r + log b)) time 
algorithm, using O ((r + b)2) space, to find all arbitrarily oriented M B Rs, improving the result of [4]. We present a lower 
bound of �(r3) on the number of M B Rs in the arbitrarily oriented case, proving that the running time of the proposed 
algorithm is worst-case optimal. Furthermore, reducing the space complexity we propose an algorithm running in O (r(r +
b)2 log(r + b)) time, using O (r + b) space, to compute all arbitrarily oriented M B Rs. We conclude the paper by discussing 
time and space trade-offs.

2. Preliminaries

We start by defining some terminology and notation. Let M(B ∪ R) denote the axis-aligned bounding box of B ∪ R , and 
let xp and yp be the x- and y-coordinate of a point p, respectively. As explained earlier, each side of an M B R touches either 
a red point or the boundary of M(B ∪ R). Hence, to compute M B Rs first we describe how to compute M B Rs that touch a 
red point on the left side. Then, computing M B Rs that touch the boundary of M(B ∪ R) on the left side can be done easily, 
as will be explained later. Thus, for now, for each red point we compute all potential M B Rs (or P M B Rs for short) that have 
the red point on their left side. Let lt denote this red point. To this aim we draw a vertical line and a horizontal half-line 
rightward through lt . This partitions M(B ∪ R) into three regions: R1 (the upper right region), R2 (the left region), and R3
(the lower right region), as illustrated in Fig. 1.

We say that a red point r∗ ∈ R1 is upper maximal if there does not exist another red point r′ ∈ R1 such that xr′ < xr∗
and yr′ < yr∗ . Connecting the upper maximal points in R1 we get a staircase which we call the ceiling. Further, we say that 
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