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Menger’s theorem is a characterization of the connectivity in finite graphs in terms of 
the minimum number of disjoint paths that can be found between any pair of vertices. 
According to Menger’s theorem, a graph G is k-connected if and only if any two vertices 
of G are connected by at least k internally disjoint paths. Moreover, there are at least 
κ(G) internally disjoint paths and, at most, min{degG (u), degG (v)} internally disjoint paths 
between any two distinct vertices u, v in G . Motivated by this observation, Oh and Chen 
(resp., Qiao and Yang) proposed the (fault-tolerant) strong Menger (resp., edge) connectivity 
as follows.
A connected graph G is called strongly Menger (edge) connected if for any two distinct 
vertices x, y in G , there are min{degG (x), degG (y)} (edge-)disjoint paths between x and y. 
A graph G is called m-(edge-)fault-tolerant strongly Menger (edge) connected if G − F re-
mains strongly Menger (edge) connected for an arbitrary set F ⊆ V (G) (resp., F ⊆ E(G)) 
with |F | ≤ m. A graph G is called m-conditional (edge-)fault-tolerant strongly Menger 
(edge) connected if G − F remains strongly Menger (edge) connected for an arbitrary set 
F ⊆ V (G) (resp., F ⊆ E(G)), |F | ≤ m and δ(G − F ) ≥ 2.
Qiao and Yang (2017) proved that all n-dimensional folded hypercubes are (2n − 2)-condi-
tional edge-fault-tolerant strongly Menger edge connected for n ≥ 5. Yang, Zhao and Zhang 
(2017) showed that all n-dimensional folded hypercubes are (2n − 3)-conditional fault-
tolerant strongly Menger connected for n ≥ 8. In this paper, we improve the result of Qiao 
and Yang by showing that all n-dimensional folded hypercubes are (3n − 5)-conditional 
edge-fault-tolerant strongly Menger edge connected for n ≥ 5. Moreover, we present an ex-
ample to show that our result is optimal with respect to the maximum tolerated edge 
faults. In addition, we show that the result of Yang, Zhao and Zhang is optimal by prov-
ing that the n-dimensional folded hypercubes are not (2n − 2)-conditional fault-tolerant 
strongly Menger connected for n ≥ 8.
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Fig. 1. Illustration of G1 and G2.

1. Introduction

The study of interconnection networks has been an important research area for parallel and distributed computer sys-
tems. They can be represented as graphs, where the vertices represent processors and the edges represent communication 
links.

For graph definitions and notations, we follow [1]. A graph G consists of a vertex set V (G) and an edge set E(G), where 
an edge is an unordered pair of distinct vertices of G . For a set F ⊆ E(G) ∪ V (G), we use G − F to denote the graph obtained 
by deleting F from G . The set of neighbors of a vertex u in G is denoted by NG (u), or briefly by N(u). For a vertex set 
U ⊆ V (G), the neighbors in V (G) \ U of vertices in U are called neighbors of U , and can be denoted by N(U ). We use 
degG(u) to represent the number of neighbors of u in G . Moreover, we use dG(u, v) to represent the distance between u
and v in G . For two disjoint subgraphs or vertex sets H1, H2 of G , we use E(H1, H2) to denote the edges with one endpoint 
in H1 and the other in H2. For a given graph G , x, y ∈ V (G), an x, y-path of length k is a finite sequence of distinct vertices 
〈v0, v1, . . . vk〉 such that x = v0, y = vk , and (vi, vi+1) ∈ E(G) for 0 ≤ i ≤ k − 1. A set F ⊆ V (G) \ {x, y} is an x, y-cut if G − F
has no x, y-path. Similarly, a set F ⊆ E(G) is an x, y-edge cut if G − F has no x, y-path.

In mathematics and computer science, (edge) connectivity is one of the basic concepts of graph theory. The vertex 
connectivity of G , namely κ(G), is the minimum size of a vertex set S such that G − S is disconnected or only has one 
vertex. The edge connectivity of G , namely λ(G), is the minimum size of an edge set S such that G − S is disconnected. 
Menger’s theorem is a characterization of the (edge) connectivity in finite graphs in terms of the minimum number of 
(edge-)disjoint paths that can be found between any pair of vertices.

Theorem 1.1. [6] (1) Let x and y be two distinct vertices of a graph G. For (x, y) /∈ E(G), the minimum size of an x, y-cut equals the 
maximum number of disjoint x, y-paths.

(2) Let x and y be two distinct vertices of a graph G. The minimum size of an x, y-edge cut equals the maximum number of 
edge-disjoint x, y-paths.

It follows from this theorem that there are at least κ(G) internally disjoint paths between any two distinct vertices u, v
in G . Moreover, there are no more than min{degG(u), degG(v)} internally disjoint paths between u and v .

Let G1 and G2 be two distinct graphs (see Fig. 1), where
V (G1) = {u1, u2, u3, u4, v1, v2, v3, v4};
E(G1) = {(u1, u2), (u2, u3), (u3, u4), (v1, v2), (v2, v3), (v3, v4), (u1, v1), (u2, v2), (u3, v3), (u4, v4), (u1, u4)};
V (G2) = V (G1);
E(G2) = E(G1) \ {(u1, u4)}.
Obviously, κ(G1) = κ(G2) = 2. By observation, there are three internally disjoint paths between any two distinct vertices 

x, y in G1, where degG1
(x) = degG2

(y) = 3. However, there are only two internally disjoint paths between u2 and v3 in 
G2. In this case, G1 is stronger than G2. Motivated by this observation, Oh and Chen in [7] proposed strong Menger con-
nectivity, which is also called maximal local-connectivity [2,3]. Similarly, Qiao and Yang [9] introduced strong Menger edge 
connectivity. For convenience, we redefine strong Menger (edge) connectivity as follows.

Definition 1.2. (1) A connected graph G is called strongly Menger connected if for any two distinct vertices x, y in G , there 
are min{degG(x), degG(y)} disjoint paths between x and y.

(2) A connected graph G is called strongly Menger edge connected if for any two distinct vertices x, y in G , there are 
min{degG(x), degG(y)} edge-disjoint paths between x and y.

Since interconnection network faults are unavoidable, fault-tolerance is quite important. Therefore, we need to consider 
fault-tolerance in real networks. Usually, we consider two kinds of fault-tolerant models in networks: random fault-tolerant 
models and conditional fault-tolerant models. Faults may occur anywhere, without restriction, in a random fault-tolerant 
model. For example, [2,3,5,8,11] mainly studied the random fault-tolerance. Next, we give the definition of (edge-)fault-
tolerant strong Menger (edge) connectivity.
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