Note

Avoidability of circular formulas

Guilhem Gamard ${ }^{\mathrm{a}}$, Pascal Ochem ${ }^{\mathrm{a}, \mathrm{b}, *}$, Gwenaël Richomme ${ }^{\mathrm{a}, \mathrm{c}}$, Patrice Séébold ${ }^{\mathrm{a}, \mathrm{c}}$
${ }^{\text {a }}$ LIRMM, Université de Montpellier and CNRS, France
${ }^{\mathrm{b}}$ CNRS, France
${ }^{\text {c }}$ Université Paul-Valéry Montpellier 3, France

ARTICLE INFO

Article history:

Received 14 October 2016
Accepted 19 November 2017
Available online xxxx
Communicated by D. Perrin

Keywords:

Words
Pattern avoidance

Abstract

Clark has defined the notion of n-avoidance basis which contains the avoidable formulas with at most n variables that are closest to be unavoidable in some sense. The family C_{i} of circular formulas is such that $C_{1}=A A, C_{2}=A B A . B A B, C_{3}=A B C A . B C A B . C A B C$ and so on. For every $i \leqslant n$, the n-avoidance basis contains C_{i}. Clark showed that the avoidability index of every circular formula and of every formula in the 3-avoidance basis (and thus of every avoidable formula containing at most 3 variables) is at most 4 . We determine exactly the avoidability index of these formulas.

(C) 2017 Elsevier B.V. All rights reserved.

1. Introduction

A pattern p is a non-empty finite word over an alphabet $\Delta=\{A, B, C, \ldots\}$ of capital letters called variables. An occurrence of p in a word w is a non-erasing morphism $h: \Delta^{*} \rightarrow \Sigma^{*}$ such that $h(p)$ is a factor of w. The avoidability index $\lambda(p)$ of a pattern p is the size of the smallest alphabet Σ such that there exists an infinite word over Σ containing no occurrence of p. Bean, Ehrenfeucht, and McNulty [2] and Zimin [13] characterized unavoidable patterns, i.e., such that $\lambda(p)=\infty$. We say that a pattern p is t-avoidable if $\lambda(p) \leqslant t$. For more information on pattern avoidability, we refer to Chapter 3 of Lothaire's book [8]. See also this book for basic notions in Combinatorics on Words.

A variable that appears only once in a pattern is said to be isolated. Following Cassaigne [3], we associate to a pattern p the formula f obtained by replacing every isolated variable in p by a dot. The factors between the dots are called fragments.

An occurrence of a formula f in a word w is a non-erasing morphism $h: \Delta^{*} \rightarrow \Sigma^{*}$ such that the h-image of every fragment of f is a factor of w. As for patterns, the avoidability index $\lambda(f)$ of a formula f is the size of the smallest alphabet allowing the existence of an infinite word containing no occurrence of f. Clearly, if a formula f is associated to a pattern p, every word avoiding f also avoids p, so $\lambda(p) \leqslant \lambda(f)$. Recall that an infinite word is recurrent if every finite factor appears infinitely many times. If there exists an infinite word over Σ avoiding p, then there exists an infinite recurrent word over Σ avoiding p. This recurrent word also avoids f, so that $\lambda(p)=\lambda(f)$. Without loss of generality, a formula is such that no variable is isolated and no fragment is a factor of another fragment.

Cassaigne [3] began and Ochem [9] finished the determination of the avoidability index of every pattern with at most 3 variables. A doubled pattern contains every variable at least twice. Thus, a doubled pattern is a formula with exactly one fragment. Every doubled pattern is 3 -avoidable [10]. A formula is said to be binary if it has at most 2 variables. The avoidability index of every binary formula has been recently determined [11]. We say that a formula f is divisible by a formula

[^0]https://doi.org/10.1016/j.tcs.2017.11.014
0304-3975/© 2017 Elsevier B.V. All rights reserved.
f^{\prime} if f does not avoid f^{\prime}, that is, there is a non-erasing morphism h such that the image of every fragment of f^{\prime} by h is a factor of a fragment of f. If f is divisible by f^{\prime}, then every word avoiding f^{\prime} also avoids f and thus $\lambda(f) \leqslant \lambda\left(f^{\prime}\right)$. Moreover, the reverse f^{R} of a formula f satisfies $\lambda\left(f^{R}\right)=\lambda(f)$. For example, the fact that $A B A . A A B B$ is 2 -avoidable implies that $A B A A B B$ and $B A B . A A B B$ are 2-avoidable. See Cassaigne [3] and Clark [4] for more information on formulas and divisibility.

Clark [4] has introduced the notion of n-avoidance basis for formulas, which is the smallest set of formulas with the following property: for every $i \leqslant n$, every avoidable formula with i variables is divisible by at least one formula with at most i variables in the n-avoidance basis.

From the definition, it is not hard to obtain that the 1 -avoidance basis is $\{A A\}$ and the 2 -avoidance basis is $\{A A, A B A . B A B\}$. Clark obtained that the 3-avoidance basis is composed of the following formulas:

- $A A$
- $A B A . B A B$
- ABCA.BCAB.CABC
- ABCBA.CBABC
- $A B C A . C A B C . B C B$
- $A B C A . B C A B . C B C$
- AB.AC.BA.CA.CB

The following properties of the avoidance basis are derived.

- The n-avoidance basis is a subset of the $(n+1)$-avoidance basis.
- The n-avoidance basis is closed under reverse. (In particular, $A B C A . B C A B . C B C$ is the reverse of $A B C A . C A B C . B C B$.)
- Two formulas in the n-avoidance basis with the same number of variables are incomparable by divisibility. (However, $A A$ is divisible $A B . A C . B A . C A . C B$.
- The n-avoidance basis is computable.

The circular formula C_{t} is the formula over $t \geqslant 1$ variables A_{0}, \ldots, A_{t-1} containing the t fragments of the form $A_{i} A_{i+1} \ldots A_{i+t}$ such that the indices are taken modulo t. Thus, the first three formulas in the 3 -avoidance basis, namely $C_{1}=A A, C_{2}=A B A \cdot B A B$, and $C_{3}=A B C A . B C A B . C A B C$, are also the first three circular formulas. More generally, for every $t \leqslant n$, the n-avoidance basis contains C_{t}.

It is known that $\lambda(A A)=3[12], \lambda(A B A . B A B)=3[3]$, and $\lambda(A B . A C . B A . C A . C B)=4[1]$. Actually, AB.AC.BA.CA.CB is avoided by the fixed point $b_{4}=0121032101230321 \ldots$ of the morphism given below.

```
0\mapsto01
1\mapsto21
2\mapsto03
3\mapsto23
```

Clark [4] obtained that b_{4} also avoids C_{i} for every $i \geqslant 1$, so that $\lambda\left(C_{i}\right) \leqslant 4$ for every $i \geqslant 1$. He also showed that the avoidability index of the other formulas in the 3 -avoidance basis is at most 4 . Our main results finish the determination of the avoidability index of the circular formulas (Theorem 1) and the formulas in the 3 -avoidance basis (Theorem 4).

2. Conjugacy classes and circular formulas

In this section, we determine the avoidability index of circular formulas.
Theorem 1. $\lambda\left(C_{3}\right)=3 . \forall i \geqslant 4, \lambda\left(C_{i}\right)=2$.
We consider a notion that appears to be useful in the study of circular formulas. A conjugacy class is the set of all the conjugates of a given word, including the word itself. The length of a conjugacy class is the common length of the words in the conjugacy class. A word contains a conjugacy class if it contains every word in the conjugacy class as a factor. Consider the uniform morphisms given below.

$$
\begin{aligned}
& g_{2}(0)=0000101001110110100 \\
& g_{2}(1)=0011100010100111101 \\
& g_{2}(2)=0000111100010110100 \\
& g_{2}(3)=0011110110100111101
\end{aligned}
$$

$$
g_{3}(0)=0010
$$

$$
g_{6}(0)=01230
$$

$$
g_{3}(1)=1122
$$

$$
g_{6}(1)=24134
$$

$$
g_{3}(2)=0200
$$

$$
g_{6}(2)=52340
$$

$$
g_{3}(3)=1212
$$

$$
g_{6}(3)=24513
$$

Lemma 2.

- The word $g_{2}\left(b_{4}\right)$ avoids every conjugacy class of length at least 5.
- The word $g_{3}\left(b_{4}\right)$ avoids every conjugacy class of length at least 3.
- The word $g_{6}\left(b_{4}\right)$ avoids every conjugacy class of length at least 2.

https://daneshyari.com/en/article/6875514

Download Persian Version:

https://daneshyari.com/article/6875514

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: ochem@lirmm.fr (P. Ochem).

