Theoretical Computer Science ••• (••••) •••-•••

ELSEVIER

Contents lists available at ScienceDirect

Theoretical Computer Science

TCS:11401

www.elsevier.com/locate/tcs

Game comparison through play

Urban Larsson^{a,*,1}, Richard J. Nowakowski^{a,2}, Carlos P. Santos^b

^a Dalhousie University, Halifax, Canada

^b Universidade de Lisboa, Campo Grande, Lisbon, Portugal

ARTICLE INFO

Article history: Received 10 September 2016 Received in revised form 8 November 2017 Accepted 24 November 2017 Available online xxxx Communicated by A. Fink

Keywords: Absolute universe Category theory Combinatorial game space Dicot misère-play Play game-comparison

ABSTRACT

Absolute Universes of Combinatorial Games, as defined in a recent paper by the same authors, include many standard short Normal- Misère- and Scoring-play monoids. Given G and H in an Absolute Universe \mathbb{U} , we define a dual Normal-play game, called the Left Provisonal Game [G, H], and show that $G \succeq H$ if and only if Left wins [G, H] playing second. As an example of our construction, we show how to compare Dicot Misère-play games in Siegel's computer program CGSuite and illustrate by including the partial order of all games of rank 2. We also show that Joyal's Normal-play Category generalizes to every Absolute Universe \mathbb{U} , and we define the associated categories LNP(\mathbb{U}).

© 2017 Published by Elsevier B.V.

1. Introduction

This paper continues the work started in "Absolute Combinatorial Game Theory" [4] of short, two player games. Here we demonstrate that game comparison in an Absolute Universe can be interpreted as a dual Normal-play game (a player who cannot move loses). We anticipate a number of applications and we emphasise two. First, Absolute Universes of Combinatorial Games can be analyzed in CGSuite³ and we illustrate by supplying partial order and code for Dicot Misère-play. Secondly, Joyal's Category for Normal-play games [3] generalizes to any Absolute Universe.

For a given winning convention (with 2 players Left and Right), game comparison boils down to: Left prefers *G* to *H* if, for all games *X*, Left does at least as well in G + X as in H + X. (G + X means that the current player plays in either *G* or *X*). Each different winning convention, possibly coupled with other constraints, gives a different partial order.

One of the most elegant discoveries of Normal-play CGT [1], is that Left wins playing second in the game *G* if and only if $G \ge 0$. Since Normal-play games constitute a group structure, this leads to a constructive (subordinate) general game comparison: for games G, H, $G \ge H$ if and only if Left wins the game G - H playing second. Thus we have a convenient conversion of 'Abstract game-comparison' to Play game-comparison.⁴

The authors recently demonstrated [4] that there is a set of properties that define Absolute Universes and together these properties reduce game comparisons to considering only a certain *Proviso*, and a *Common Normal Part* (Section 2,

https://doi.org/10.1016/j.tcs.2017.11.029 0304-3975/© 2017 Published by Elsevier B.V.

Please cite this article in press as: U. Larsson et al., Game comparison through play, Theoret. Comput. Sci. (2018), https://doi.org/10.1016/j.tcs.2017.11.029

^{*} Corresponding author.

E-mail addresses: urban031@gmail.com (U. Larsson), r.nowakowski@dal.ca (R.J. Nowakowski), cmfsantos@fc.ul.pt (C.P. Santos).

¹ Partially supported by the Killam Trusts.

² Partially supported by NSERC grant 04139-2014.

³ CGSuite is a computer program, coded by A. Siegel, for evaluating combinatorial games.

⁴ This type of game comparison was preceded by Milnor's "Positional games" in the 1950s, but his class of games is not Absolute, so we cannot use it here.

Doctopic: Algorithms, automata, complexity and games ARTICLE IN PRESS

U. Larsson et al. / Theoretical Computer Science ••• (••••) •••-•••

Theorem 2.4 in this paper). Except for Normal-play, typically Absolute Universes only have a monoid structure, so we cannot use the 'inverse' of any game freely.

For each Absolute Universe, we construct a dual Normal-play game, called the *Left Provisonal Game* (LPG), [*G*, *H*] which is essentially playing G - H (as if *H* were invertible) but where Left's options are restricted by the Proviso. By previous work [4] we show that the games *G* and *H* satisfy $G \succeq H$ if and only if Left wins the LPG [*G*, *H*] whenever Right starts (Theorem 2.5).

By this, we can adapt existing results on Normal-play to any Absolute Universe, and we exemplify this by studying the Dicot Misère in Section 3 (with corresponding code in Appendix B). Section 4 concerns the second example on Category theory.

We give the relevant background on Absolute Combinatorial Game Theory [4] in Appendix A at the end of this paper.

2. Absolute game comparison and the Left Provisonal Game

First we recall the Proviso for a pair of games in a given Absolute Universe [4] (the relevant background on outcomes, left-atomic games and so on, is also given in Appendix A), and then we construct the dual Normal-play *Left Provisonal Game* (LPG).

Definition 2.1 (*Proviso*). Consider an Absolute Universe \mathbb{U} , and let $G, H \in \mathbb{U}$. The ordered pair of games $[G, H] \in \text{Proviso}(\mathbb{U}) \subseteq \mathbb{U} \times \mathbb{U}$ if

 $o_L(G + X) \ge o_L(H + X)$ for all left-atomic games $X \in \mathbb{U}$; $o_R(G + X) \ge o_R(H + X)$ for all right-atomic games $X \in \mathbb{U}$.

Ordered pairs of games in an Absolute Universe have a nice Normal-play game interpretation. That is, each ordered pair of games $[G, H] \in \mathbb{U} \times \mathbb{U}$ can be interpreted as a Normal-play game.

Definition 2.2 (*Left Provisonal Game*). Consider an Absolute Universe \mathbb{U} , and let $G, H \in \mathbb{U}$. The *Left Provisonal Game* [G, H] is defined as follows:

(1) The Left options of [G, H] are of the form:

- (a) $[G^L, H] \in \text{Proviso}(\mathbb{U}), G^L \in G^{\mathcal{L}};$
- (b) $[G, H^R] \in \text{Proviso}(\mathbb{U}), H^R \in H^{\mathcal{R}}.$
- (2) The Right options of [G, H] are of the form $[G^R, H]$, $G^R \in G^R$, and $[G, H^L]$, $H^L \in H^L$;

(3) The player who, on their turn, cannot move loses.

Note that Right cannot move and loses playing first if both $G^{\mathcal{R}}$ and $H^{\mathcal{L}}$ are empty. For Left the situation is more intricate. If, for all $G^{L} \in G^{\mathcal{L}}$, $[G^{L}, H] \notin \text{Proviso}(\mathbb{U})$ and for all $H^{R} \in H^{\mathcal{R}}$, $[G, H^{R}] \notin \text{Proviso}(\mathbb{U})$, then Left cannot move and loses. Using the standard notation, thus $[G, H] = \{[G, H]^{\mathcal{L}} \mid [G, H]^{\mathcal{R}}\}$ is the Normal-play game

 $\{[G^L, H] \in \text{Proviso}(\mathbb{U}), [G, H^R] \in \text{Proviso}(\mathbb{U}) \mid [G^R, H], [G, H^L]\},\$

for all $G^{L} \in G^{\mathcal{L}}$, $H^{R} \in H^{\mathcal{R}}$, etc.

Definition 2.3 (*Left's maintenance*). Consider an Absolute Universe \mathbb{U} , and let $G, H \in \mathbb{U}$. The Left Provisonal Game $[G, H] \in Maintain(\mathbb{U})$ if, for all Right options $[G, H]^{\mathcal{R}} \in [G, H]^{\mathcal{R}}$, there is a Left option $[G, H]^{\mathcal{R}L}$, such that $[G, H]^{\mathcal{R}L} \in Maintain(\mathbb{U})$.

Let us recall the main theorem for comparing games in an Absolute Universe, now stated as an equivalence involving Left Provisonal Games (also see Appendix A).

Theorem 2.4 (Basic order of CGT, [4]). Consider an Absolute Universe \mathbb{U} and let $G, H \in \mathbb{U}$. Then $G \succeq H$ if and only if $[G, H] \in Proviso(\mathbb{U}) \cap Maintain(\mathbb{U})$.

Analogously:

Theorem 2.5. Let *G*, *H* be games in an Absolute Universe \mathbb{U} . Then $G \succeq H$ if and only if $[G, H] \in Proviso(\mathbb{U})$ and $[G, H] \ge 0$.

Proof. By Theorem 2.4, it suffices to prove that $[G, H] \ge 0$ is equivalent with $[G, H] \in Maintain(\mathbb{U})$. This follows precisely because the inequality means Left wins playing second in Normal-play, which is Definition 2.2 (3) combined with the definition of Maintain(\mathbb{U}). \Box

Please cite this article in press as: U. Larsson et al., Game comparison through play, Theoret. Comput. Sci. (2018), https://doi.org/10.1016/j.tcs.2017.11.029

Download English Version:

https://daneshyari.com/en/article/6875523

Download Persian Version:

https://daneshyari.com/article/6875523

Daneshyari.com