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We introduce a new infinite family of regular graphs admitting nested solutions in the 
edge-isoperimetric problem for all their Cartesian powers. The obtained results include as 
special cases most of previously known results in this area.
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1. Introduction

Let G = (V G , EG) be a graph and A, B ⊆ V G . Denote

IG(A, B) = {(u, v) ∈ EG
∣∣ u ∈ A, v ∈ B},

IG(A) = IG(A, A),

IG(m) = max
A⊆V G , |A|=m

|IG(A)|.

We will often omit the index G . Our subject is the following version of the edge-isoperimetric problem (EIP): for a fixed m, 
1 ≤ m ≤ |V G |, find a set A ⊆ V G such that |A| = m and |I(A)| = I(m). We call such a set A optimal. This problem is known 
to be NP-complete in general and has many applications in various fields of knowledge, see survey [2].

We restrict ourselves to graphs representable as Cartesian products of other graphs. Given two graphs G = (V G , EG) and 
H = (V H , E H ), their Cartesian product is defined as a graph G × H with the vertex-set V G × V H whose two vertices (x, y)

and (u, v) are adjacent iff either x = u and (y, v) ∈ E H , or (x, u) ∈ EG and y = v . The graph Gn = G × G × · · · × G (n times) 
is called the nth Cartesian power of G .

A particular interest in study of EIP is the case when there exists a total order O on the vertex set of graphs in question 
such that for every m the initial segment of this order of size m is an optimal set. Such order O is called optimal order. 
There exist graphs such that their Cartesian powers do not admit optimal orders. For example, it is known that there does 
not exist optimal orders for the second and higher powers of cycles of length p for p > 5 [6]. However, existence of a 

* Corresponding author.
E-mail address: sbezruko@uwsuper.edu (S. Bezrukov).

https://doi.org/10.1016/j.tcs.2017.12.036
0304-3975/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2017.12.036
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:sbezruko@uwsuper.edu
https://doi.org/10.1016/j.tcs.2017.12.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.12.036&domain=pdf


S. Bezrukov et al. / Theoretical Computer Science 721 (2018) 42–53 43

nested structure of solutions (that is, an optimal order) is an important graph property, because it provides as an immediate 
consequence solutions to many applied problems. Among such problems are the cutwidth, wirelength, and bisection width 
problems, construction of good k-partitioning of graphs and their embedding to some other graphs [2]. This stimulates the 
study of graphs which admit optimal orders for all their Cartesian powers. We call such graphs edge-isoperimetric.

The EIP for the Cartesian powers of a graph G has been well intensively studied for various graphs, see survey [2]. To 
summarize some of these results and present our new one we need to define the lexicographic order on a set of n-tuples 
with integer entries. For that we say that (x1, . . . , xn) is greater than (y1, . . . , yn) iff there exists an index i, 1 ≤ i ≤ n, such 
that x j = y j for 1 ≤ j < i and xi > yi . It turns out that just a few different optimal orders are discovered for the EIPs. Some 
of them are proved to work just for a few graphs [2,4]. This leaves the lexicographic order to work in most of known cases. 
In large this is due to the following result called in [1] local-global principle.

Theorem 1. (Ahlswede, Cai [1]) If lexicographic order is optimal for G × G then it is optimal for Gn for any n ≥ 3.

The main difficulty in applying the local-global principle to a given graph G is to establish the optimality of the lexi-
cographic order for G × G . For this, however, no general methods have been developed so far. At this state of research a 
solution of the EIP on G × G for any other concrete graph G would be interesting and useful for developing more general 
methods. It seems difficult to characterize all graphs for whose all Cartesian powers the lexicographic order is optimal. 
Examples include graphs studied in [1,3,8,9]. However, we believe to the following conjecture.

Conjecture 1. If lexicographic order is optimal for G × G then G is regular.

All graphs studied in the above mentioned papers [1,3,8,9] are regular. In the light of this conjecture we emphasize 
on Cartesian powers of regular graphs. It is more convenient to work not directly with graphs, but with their numeric 
characteristic δG that we call δ-sequence. For a graph G = (V , E) denote

δ(m) = I(m) − I(m − 1), with δ(1) = 0,

δG = (δ(1), δ(2). . . . , δ(|V |)).
For |V G | = p we call δG symmetric if

δ(i) + δ(p − i + 1) = δ(p) for i = 1, . . . , p.

For example, the δ-sequence of the 3-dimensional unit cube δQ 3 = (0, 1, 1, 2, 1, 2, 2, 3) is symmetric. It is easily shown that 
if G is regular then δG is symmetric. The recent result shows that the converse is also true.

Theorem 2. (Bonnet, Sikora [5]) If δG is symmetric then G is regular.

Our experience shows that in order for the lexicographic order to be optimal for G × G , the graph G has to be dense, 
that is, have many edges. It seems that high density and regularity are crucial conditions for the lexicographic order to 
be optimal. Cliques have highest density and the lexicographic order is optimal for every their Cartesian power [9]. It is 
interesting to mention that removal of an edge from a clique leads to the next best choice for a high density graph, but 
products of this graph do not admit any optimal order. A natural way to construct dense regular graphs is to start with a 
clique K p (or K p,p) and remove a factor from it. In particular, one can consider removing s ≥ 1 disjoint perfect matchings 
M from K p or K p,p . These are exactly the graphs being studied in [1,3,8,9]. The δ-sequences of these graphs are as follows:

• δK p = ({0, 1, 2, 3, . . . , p − 1})
• δK p−sM = ({0, 1, 2, . . . , p

2 − 1}, { p
2 − s, p

2 − s + 1, p
2 − s + 2, . . . , p − s − 1})

• δK p,p = ({0, 1}, {1, 2}, {2, 3}, . . . , {p − 1, p})

The braces above show partitioning of δ-sequences into maximum monotonic subsequences. Thus, K p has just one mono-
tonic subsequence, K p −sM (a clique with s disjoint perfect matchings removed) has 2 (maximum) monotonic subsequences, 
and K p,p has p ones. Our main result generalizes all the above mentioned results for graphs Hs,p,i defined by their 
δ-sequences. Namely, δHs,p,i must admit partitioning into s monotonic subsequences of size p of the form:

({0,1, . . . , p − 1}, {p − i, . . . , p − i + (p − 1)}, . . . , {(s − 1)(p − i), . . . , (s − 1)(p − i) + p − 1}).

For example, for s = 3, p = 4, i = 2 one has δH3,4,2 = ({0, 1, 2, 3}, {2, 3, 4, 5}, {4, 5, 6, 7}).
In the next section we present a construction of some graphs Hs,p,i with such δ-sequences. Our main result is as follows:

Theorem 3. (Main result) Lexicographic order is optimal for Hs,p,i × Hs,p,i for p ≥ 3, s ≥ 2, and 1 ≤ i ≤ p − i.
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