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We consider the multiplicative complexity of Boolean functions with multiple bits of 
output, studying how large a multiplicative complexity is necessary and sufficient to 
provide a desired nonlinearity. For so-called ��� circuits, we show that there is a tight 
connection between error correcting codes and circuits computing functions with high 
nonlinearity. Combining this with known coding theory results, we show that functions 
with n inputs and n outputs with the highest possible nonlinearity must have at least 
2.32n AND gates. We further show that one cannot prove stronger lower bounds by only 
appealing to the nonlinearity of a function; we show a bilinear circuit computing a function 
with almost optimal nonlinearity with the number of AND gates being exactly the length 
of such a shortest code.
Additionally we provide a function which, for general circuits, has multiplicative complexity 
at least 2n − 3.
Finally we study the multiplicative complexity of “almost all” functions. We show that 
every function with n bits of input and m bits of output can be computed using at most 
2.5(1 + o(1))

√
m2n AND gates.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Cryptographic functions such as encryption functions should have high nonlinearity to be resistant against linear and 
differential attacks (see again [10] and the references therein). This is an explicit design criteria for modern cryptographic 
systems, such as AES, [12], which has been used as a benchmark for several implementations of homomorphic encryption.

In several settings, such as homomorphic encryption and secure multiparty computation (see e.g. [30] and [17]), for 
practicality/efficiency, the number of AND gates is significantly more important than the number of XOR gates, hence one 
is interested in functions with as few AND gates as possible. For many such protocols, it is not just the number of AND 
gates that matters, but also the AND depth. For example, in several protocols for secure multiparty computation the number 
of AND gates is proportional to the number of bits sent, and the AND depth corresponds to the number of rounds in the 
protocol (see e.g. [20]), and in typical protocols for homomorphic encryption, the norm of the noise after an AND gate is the 
product of the norms of the noise from the inputs, so the AND depth greatly affects the number of expensive bootstrappings, 
relinearizations, and/or modulus reductions which are necessary (see e.g. [13]). For more examples we refer to [1] and the 
references therein.

A natural question to ask is how the nonlinearity of a function and its multiplicative complexity (the number of AND 
gates necessary to compute it when only AND, NOT and XOR gates are used) are related to each other: how large does 
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one measure need to be in order for the other to have at least a certain value? As stated in Section 1.1, for every desired 
nonlinearity, it is known exactly how many AND gates are necessary and sufficient for functions with only one output to 
achieve this. We study this same question for functions with multiple bits of output.

1.1. Definitions and preliminaries

Let F2 be the finite field of order 2 and Fn
2 the n-dimensional vector space over F2.

We denote by [n] the set {1, . . . , n}. An (n, m)-function is a mapping from Fn
2 to Fm

2 and we refer to these as the Boolean 
functions. When m > 1 we say that the function is vector valued.

It is well known that every (n, 1)-function f can be written uniquely as a multilinear polynomial over F2

f (x1, . . . , xn) =
∑

X⊆[n]
αX

∏
i∈X

xi,

where αX ∈ {0, 1} for subsets of indices. This polynomial is called the Zhegalkin polynomial or the algebraic normal form (ANF) 
of f . For the rest of this paper most, but not all, arithmetic will be in F2. We trust that the reader will find it clear whether 
arithmetic is in F2, F2n , or R when not explicitly stated, and will not address it further.

The degree of an (n, 1)-function f is the largest |X | such that αX = 1. For an (n, m)-function f , we let f i be the 
(n, 1)-function defined by the ith output bit of f , and say that the degree of f is the largest degree of f i for i ∈ [m]. 
A function is affine if it has degree 1, and quadratic if it has degree 2. For T ⊆ [m] we let

f T =
∑
i∈T

f i,

and for v ∈ F
n
2 we let |v| denote the Hamming weight of v, that is, the number of nonzero entries in v, and let |u + v| be the 

Hamming distance between the two vectors u and v.

Nonlinearity of Boolean Functions. We will use several facts on the nonlinearity of Boolean functions. We refer to the two 
chapters in [9,10] for proofs and references.

The nonlinearity of an (n, 1)-function f is the Hamming distance to the closest affine function, more precisely

N L( f ) = 2n − max
a∈Fn

2,b∈F2

|{x ∈ F
n
2| 〈a,x〉 + b = f (x)}|,

where 〈a,x〉 = ∑n
i=1 ai xi . For an (n, m)-function f , the nonlinearity is defined as

N L( f ) = min
T ⊆[m],T �=∅

{N L( f T )}.

The nonlinearity of an (n, m)-function is always between 0 and 2n−1 − 2
n
2 −1. The (n, m)-functions which meet the up-

per bound are called bent functions. Bent (n, 1) functions exist if and only if n is even. A standard example of a bent 
(n, 1)-function is the inner product, on n = 2k variables, defined as:

I P2k(x1, . . . , xk, y1, . . . , yk) = 〈x,y〉 .

This function is clearly quadratic. If we identify Fn
2 with F2n , a standard example of a bent (2n, n)-function is the finite field 

multiplication function:

f (x,y) = x · y (1)

where multiplication is in F2n .
If n = m, N L( f ) is at most 2n−1 − 2

n−1
2 , see [11]. Functions meeting this bound are called almost bent. These exist only 

for odd n. As remarked by Carlet, this name is a bit misleading since the name indicates that they are suboptimal, which 
they are not. Again, if we identify Fn

2 and F2n , for 1 ≤ i ≤ n−1
2 and gcd(i, n) = 1, the so called Gold functions, G(x), defined as

G(x) = x2i+1 = x ·
(

x2i
)

(2)

are almost bent. This function is quadratic since the F2n -operator x �→ x2 is affine in when considered as an operator on 
F

n
2, and each output bit of finite field multiplication is quadratic in the inputs, see also [10].

Multiplicative Complexity and Circuit Classes. In this paper we consider multiple classes of circuits:

• An XOR-AND circuit is a Boolean circuit where each of the gates is either ⊕ (XOR, addition in F2), ∧ (AND, multiplication 
in F2) or the constant 1. The XOR gates may have unbounded fanin, and the AND gates have fanin 2;
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