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In this paper, we address the problem of computing a minimum-width square annulus in 
arbitrary orientation that encloses a given set of n points in the plane. A square annulus is 
the region between two concentric squares. We present an O (n3 log n)-time algorithm that 
finds such a square annulus over all orientations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An annulus informally depicts a ring-shaped region in the plane. More specifically, an annulus of a simple closed curve 
C , such as a circle, with a reference point inside C can be regarded as the region between two concentric homothets of C . 
Given a set P of n points in the plane, finding geometric shapes that best fit P is an important variant of shape matching 
problems. If the shape is restricted to C under a certain family of transformations, then this problem is equivalent to finding 
the minimum-width annulus that contains P . Among others, the case when C is chosen as a circle has been most intensively 
studied. The minimum-width circular annulus problem has been first addressed independently by Wainstein [17] and by 
Roy and Zhang [14], resulting in O (n2)-time algorithms. The same time bound can be achieved by using the observation 
that the center of a minimum-width circular annulus corresponds to a vertex of the nearest-site Voronoi diagram of P , 
a vertex of the farthest-site Voronoi diagram of P , or an intersection point of two edges of the two diagrams [10]. The 
first sub-quadratic O (n

8
5 +ε)-time algorithm was presented by Agarwal et al. [3] The currently best exact algorithm takes 

O (n
3
2 +ε) time by Agarwal and Sharir [2]. Linear-time approximation schemes are also known by Agarwal et al. [4] and by 

Chan [7].
The minimum-width circular annulus problem has applications in facility location in a sense that the center of the 

optimal annulus minimizes the difference between the maximum and the minimum distances from the center to input 
points with respect to the Euclidean metric. Of course, in some applications, other metrics like the L1 or L∞ metric would 
be more appropriate. In this sense, the square annulus or rectangular annulus problem naturally arises. Abellanas et al. [1]
considered minimum-width rectangular annuli that are axis-parallel, and presented two algorithms taking O (n) or O (n logn)

time: one minimizes the width over rectangular annuli with arbitrary aspect ratio and the other does over rectangular annuli 
with a prescribed aspect ratio, respectively. Gluchshenko et al. [11] presented an O (n log n)-time algorithm that computes a 
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Fig. 1. (a) wθ (p,q) and wθ+π/2(p,q). (b) The minimum-width θ -aligned square annulus Aθ (c) with center c enclosing points P .

minimum-width axis-parallel square annulus, and proved a matching lower bound, while the second algorithm by Abellanas 
et al. can do the same in the same time bound. The log n gap between the rectangular and the square annulus problems 
could be understood in a geometric point of view. In both cases, the outer boundary of an optimal annulus can be chosen 
as a smallest axis-parallel rectangle or square enclosing P , as shown in [1,11], but the smallest enclosing rectangle is 
unique while there are in general infinitely many smallest enclosing squares. If one considers rectangular or square annuli 
in arbitrary orientation, the problem gets more difficult. Mukherjee et al. [13] presented an O (n2 log n)-time algorithm that 
computes a minimum-width rectangular annulus in arbitrary orientation and arbitrary aspect ratio. However, to our best 
knowledge, there is no known algorithm for the minimum-width square annulus in arbitrary orientation. We aim to give 
the first algorithmic results to this variant of the problem.

A variant of the problem where the outer or inner boundary of the resulting annulus is fixed has also been studied. 
Duncan et al. [9] and De Berg et al. [8] independently showed that the minimum-width circular annulus can be computed 
in O (n log n) time in this case. Barequet et al. [5] and Barequet and Goryachev [6] considered the case when the prescribed 
shape C is given as any convex or simple polygon for this variant of the problem. When C is a square and its orientation 
can be chosen arbitrarily, their results imply that the minimum-width square annulus can be computed in O (n4 log n) time, 
provided that the side length of its outer, inner or middle square is given.

In this work, we consider the minimum-width square annulus problem in arbitrary orientation, and present an 
O (n3 log n)-time exact algorithm. Note that this is the first algorithm for the problem. Comparing to the results of Bare-
quet and Goryachev [6], our algorithm is more efficient while dropping the constraints on the size of the resulting annulus.

2. Preliminaries

For any square in the plane R2, its center is the intersection point of its two diagonals and its radius is half its side 
length. Two squares are called concentric if they share a common center and any pair of their sides are either parallel or 
orthogonal. A square annulus A is the region between two concentric squares, including its boundary. The width of a square 
annulus A is the difference of radii of the two concentric squares determining A.

The orientation of a line or line segment � in the plane is a nonnegative value θ ∈ [0, π) such that the rotated copy of 
the x-axis by θ counter-clockwise is parallel to �. If the orientation of a line or line segment is θ , then we say that the line 
or line segment is θ -aligned. A rectangle, a square, or a square annulus is also called θ -aligned for some θ ∈ [0, π/2) if each 
of its sides is either θ -aligned or (θ + π/2)-aligned.

For any two points p, q ∈ R
2, let pq denote the line segment joining p and q, and |pq| denote the Euclidean length of 

pq. We will often discuss the distance between the orthogonal projections of p and q onto any θ -aligned line, denoted by 
wθ (p, q). It is not difficult to see that wθ (p, q) = |pq| · | cos(θpq − θ)|, where θpq denotes the orientation of pq. See Fig. 1(a). 
Also, we define dθ (p, q) := max{wθ (p, q), wθ+π/2(p, q)} to be the convex distance between p and q with its unit disk being 
a unit θ -aligned square. Note that dθ (p, q) is exactly the radius of the smallest θ -aligned square with center p that contains 
q in its boundary.

In a specific orientation θ ∈ [0, π/2), we regard any θ -aligned line to be horizontal and directed from left to right, and 
any (θ + π/2)-aligned line to be vertical and directed from bottom to top. For any p, q ∈ R

2, we say that p is to the left
of q, or q is to the right of p, in θ if the orthogonal projection of p onto a θ -aligned line is prior to that of q. Similarly, p
is below q or equivalently q is above p in θ if the orthogonal projection of p onto a (θ + π/2)-aligned line is prior to that 
of q. For example, in Fig. 1(a), p is to the left of and below q in θ .

Let P be a set of points in R2. In orientation θ ∈ [0, π/2), let l∗θ , r∗
θ , t∗

θ and b∗
θ be the leftmost, rightmost, topmost, and 

bottommost points in θ among those in P . Then, the smallest θ -aligned rectangle Rθ enclosing P is uniquely determined 
by these four extreme points l∗θ , r∗

θ , t∗
θ and b∗

θ . The height of Rθ is the length of a vertical side of Rθ and the width of Rθ

is the length of its horizontal side. That is, the height of Rθ is equal to wθ+π/2(t∗
θ , b

∗
θ ) and its width is equal to wθ (l∗θ , r∗

θ ).
In this paper, we are interested in square annuli enclosing P . If we fix an orientation θ ∈ [0, π/2) and a center c ∈ R

2, 
then there is a unique minimum-width θ -aligned square annulus containing P , which is determined by the smallest square 
that encloses P and the largest square whose interior contains no point of P . We denote this annulus by Aθ (c). See Fig. 1(b). 
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