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We study the computational complexity of the problem of computing an optimal clustering 
{A1, A2, ..., Ak} of a set of points assuming that every cluster size |Ai| belongs to a given 
set M of positive integers. We present a polynomial time algorithm for solving the problem 
in dimension 1, i.e. when the points are simply rational values, for an arbitrary set M of 
size constraints, which extends to the �1-norm an analogous procedure known for the 
Euclidean norm. Moreover, we prove that in dimension 2, assuming Euclidean norm, the 
problem is (strongly) NP-hard with size constraints M = {2, 4}. This result is extended also 
to the size constraints M = {2, 3} both in the case of Euclidean and �1-norm.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the area of unsupervised machine learning and statistical data analysis the clustering methods play an important role 
with applications in pattern recognition, bioinformatics, signal and image processing, medical diagnostics. Clustering consists 
in grouping a set of objects into subsets, called clusters, that are maximally homogeneous with respect to a suitable criterion 
for evaluating the similarity of objects [5,8]. Partitional or hard clustering requires the subsets to be disjoint and non-empty, 
and in the usual geometric setting the similarity between objects is measured by distance between points representing the 
objects [17].

A classical clustering problem is the so-called Euclidean Minimum-Sum-of-Squares [1], Variance-based [11] or k-Means 
clustering problem: given a finite point set X ⊂ Rd , find a k-partition {A1, ..., Ak} of X minimizing the sum of weights 
W (A1, ..., Ak) = ∑

i W (Ai) = ∑
i

∑
x∈Ai

‖x − μ(Ai)‖2 of all clusters, where μ(Ai) is the sample mean of Ai and ‖ · ‖ is the 
Euclidean norm (also called �2-norm). In most cases such a partitional clustering problem is difficult: when d is part of 
the instance the problem is NP-hard even if the number of clusters is fixed to k = 2 [1,7]; the same occurs for arbitrary k
with fixed dimension d = 2 [18]. Nonetheless, a well-known heuristic for this problem is Lloyd’s algorithm [15], also named 
k-Means Algorithm, which is not guaranteed to converge to the global optimum. This algorithm is usually very fast, but may 
require exponential time in the worst case [25].

Often one has some a-priori information on the clusters, that can be incorporated into traditional clustering techniques 
to increase the clustering performance [2]. Problems that include background information are so-called constrained clus-
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tering and can be divided into two classes based on the constraints: instance-level constraints typically define pairs of 
elements that must be (must-link) or cannot be (cannot-link) in the same cluster [28], and cluster-level constraints pre-
scribe characteristics of each cluster, such as cluster diameter or cluster size [6,24]. In [29] cluster size constraints are used 
for improving clustering accuracy, for instance allowing one to avoid extremely small or large clusters in standard cluster 
analysis. In the size constrained clustering (SCC) problem, assuming an �p -norm with integer p ≥ 1, typically one is given a 
finite set X ⊂ Rd of n points and k positive integers m1, ..., mk such that 

∑
i mi = n, and searches for a partition {A1, ..., Ak}

of X , with |A1| = m1, ..., |Ak| = mk , that minimizes the objective function W (A1, ..., Ak) = ∑k
i=1

∑
x∈Ai

‖x − ci‖p
p , where each 

ci = argminc∈Rd
∑

x∈Ai
‖x − c‖p

p is the �p-centroid of Ai .
For arbitrary k ∈ N, the SCC problem is NP-hard also in dimension d = 1, for any (fixed) �p-norm, p ≥ 1 [3]. The same 

negative result holds for arbitrary d ∈ N when the number of clusters is fixed to k = 2, for every �p-norm with p > 1 [3]. 
On the contrary, in the case d = 2 = k the SCC problem is solvable in O (n2 log n) time assuming Manhattan norm (�1) and 
in O (n 3

√
m log2 n) time with Euclidean norm (�2) [14], where m is the size of one of the two clusters.

In this work we study a relaxed version of the SCC problem, where the size of each cluster belongs to a given set 
M of integers, rather than being fixed by the instance of the problem. We show that in dimension d = 1, assuming the 
�1-norm, for an arbitrary (finite) M ⊂ N the solution can be obtained in O (n(ks + n)) time, where n is the number of 
input points, s = |M| and k is the number of clusters. This extends an analogous algorithm proposed for the problem 
assuming the Euclidean norm [4]. It further emphasizes the difference w.r.t. SCC problem, which is NP-hard in dimension 1 
for every �p-norm, showing that relaxing the size constraints is a key condition to guarantee a solution computable in 
polynomial time. We recall that clustering problems in dimension 1 have already been studied in the literature, especially in 
connections with problems of computational biology [4,22]. In particular in [4] an algorithm for solving clustering problem 
in dimension 1 (with size constraints) is applied for determining promoter regions in genomic sequences, which can be 
defined intuitively as positions in DNA molecules where the occurrence of certain patterns of nucleotides allows the cell to 
activate or silence the genes (hence regulating gene expression).

Other results of the present contribution concern the relaxed size constrained clustering problem in dimension d = 2. In 
this case, assuming �2-norm and fixing M = {2, 4}, we prove that the problem is strongly NP-hard and it is also easy to see 
that it does not admit FPTAS unless P = N P . Moreover, we prove the same results for the case M = {2, 3} both with �2 and 
�1 norm. This also implies that the general relaxed size constrained problem, where M is part of the instance, is strongly 
NP-hard on the plane both assuming �2 and �1-norm.

The introduction of relaxed size constraints is motivated by all applications where one wants to bound the cluster size 
to certain values, possibly avoiding too large or too small clusters, up to the balanced case where all clusters have almost 
the same size. Situations of this type are rather common in several contexts [2,16,29].

2. Problem definition

In this section we define the problem and fix our notation. Given two positive integers d and p, for every point a =
(a1, ..., ad) ∈ Rd , we denote by ‖a‖p the �p-norm of a, i.e. ‖a‖p = (

∑d
1 |ai |p)1/p . Clearly, ‖a‖2 and ‖a‖1 are the Euclidean 

and the Manhattan (or Taxicab) norm of a, respectively.
Given a finite set X ⊂ Rd , a cluster of X is a non-empty subset A ⊂ X , while a clustering is a partition {A1, ..., Ak} of 

X in k clusters for some k. Assuming the �p norm, the centroid and the weight of a cluster A are the values C A ∈ Rd and 
W p(A) ∈R+ defined, respectively, by

C A = argmin
c∈Rd

∑
a∈A

‖a − c‖p
p, W p(A) =

∑
a∈A

‖a − C A‖p
p

The weight of a clustering {A1, ..., Ak} is W p(A1, ..., Ak) = ∑k
1 W p(Ai). We recall that, in case of �2-norm, the weight of a 

cluster A can be computed by relation

W2(A) = 1

|A|
∑
(∗)

‖a − b‖2
2 (1)

where the sum is extended to all unordered pairs {a, b} of distinct elements in A. Moreover, given a set M ⊂ N, any 
clustering {A1, ..., Ak} such that |Ai | ∈M for every i = 1, . . . , k, is called M-clustering.

RSC-d Problem (with �p-norm): Relaxed Size Constrained Clustering in Rd

Given a set X ⊂ Qd of n points, an integer k such that 1 < k < n and a finite set M of positive integers, find an M-clustering 
{A1, ..., Ak} of X that minimizes W p(A1, ..., Ak).1

When M is not included in the instance, but fixed in advance, we call the problem M-RSC-d (with �p-norm). In this 
work we study these problems in dimension d = 1, 2 assuming �1 and �2-norm.

1 If X does not admit a M-clustering then symbol ⊥ is returned.
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