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We consider Persistence, a new online problem concerning optimizing weighted obser-
vations in a stream of data when the observer has limited buffer capacity. A stream of 
weighted items arrive one at a time at the entrance of a buffer with two holding loca-
tions. A processor (or observer) can process (observe) an item at the buffer location it 
chooses, deriving this way the weight of the observed item as profit. The main constraint 
is that the processor can only move synchronously with the item stream. Persistence is 
the online problem of scheduling the processor movements through the buffer so that its 
total derived value is maximized under this constraint. We study the performance of the 
straight-forward heuristic Threshold, i.e., forcing the processor to “follow” an item through 
the whole buffer only if its value is above a threshold. We analyze both the optimal offline 
and Threshold algorithms in the cases where the input stream is either a random permuta-
tion, or its items are iid valued. We show that in both cases the competitive ratio achieved 
by the Threshold algorithm is at least 2/3 when the only statistical knowledge of the items 
is the median of all possible values. We generalize our results by showing that Threshold, 
equipped with some minimal statistical advice about the input, achieves competitive ra-
tios in the whole spectrum between 2/3 and 1, following the variation of a newly defined 
density-like measure of the input. This result is a significant improvement over the case of 
arbitrary input streams, where we show that no online algorithm can achieve a competitive 
ratio better than 1/2.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Suppose that the Automated Quality Control (AQC) of an assembly line has the ability to check all new parts as they enter 
the assembly line. Every such check increases our quality confidence by a certain percentage, which depends on the nature 
of the part itself. Now, suppose that the AQC is given the option of a second look at the same part in the next time slot, 
with a similar increase in our quality confidence. The downsize of this option, is that when the AQC returns to the beginning 

✩ This is an extended version of results which originally appeared in AAIM 2016 [12].
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of the assembly line, it will have completely missed the part immediately following the one that was double-checked. We 
are looking for an algorithm to decide whether to take the option or not with every new item. Obviously, a good strategy 
would strive to look twice at “low-quality” items, since that would imply the greatest increases to our confidence, while 
“missing” only pristine-looking ones.

This problem falls within the data stream setting: a sequence of input data is arriving at a very high rate, but the 
processing unit has limited memory to store and process the input. Data stream algorithms have been explored extensively 
in the computer science literature. Typical algorithms in this area work with only a few passes (often just one) over the 
data input and use memory space less than linear in the input size. Applications can be found in processing cell phone calls 
or Internet router data, executing Web searches, etc. (cf. [20,21]).

In this work we study a new online problem in data stream processing with limited buffer capacity. An online stream of 
items (the parts in our AQC example) arrives (one item at a time) at a buffer with two locations L0, L1 (assembly points 1 
and 2 respectively in the example above), staying at each location for one unit of time, in this order. A processor/observer 
(the AQC) can move between the two locations synchronously, i.e., its movements happen at the same time as the items 
move. This means that if the processor is processing (observing) the i-th item in time t at L0, moving to L1 will result in 
processing again the i-th item at L1 in time t + 1. On the contrary, if the processor is processing the i-th item in time t
at L1, moving to L0 will result in processing the i + 2-th item at L0 in time t + 1; the i + 1-th item has already moved 
to L1 and will leave the buffer without the processor ever encountering it! (just like the AQC totally missed a part). We 
emphasize that we restrict the processor to not even know what item it missed (i.e., cannot “see” into a location other than 
its current one). Processing the i-th item (either in L0 or L1) produces an added value or payoff. The processor has very 
limited (constant in our results) memory capacity, and cannot keep more than one value (of size no larger than the largest 
observable value), as well as it can only do comparisons. The problem we address is whether such a primitive processor can 
have a strategy to persist and observe (if possible) mostly “good values”, especially when compared to an optimal algorithm 
that is aware of the input stream. We call this online problem Persistence, which to the best of our knowledge is also new.

1.1. Related work

There is extensive literature on data stream algorithms. Here the emphasis is on input data arriving at a very high 
rate and limited memory to store and process the input (thus stressing a tradeoff between communication and computing 
infrastructure). A general introduction to data stream algorithms and models can be found in [20,21]. Lower bound models 
for space complexity are elaborated in [3]. In the section on new directions for streaming models, [21] discusses several 
alternatives for data streams for permutation streaming of non-repeating items [1], windowed streaming whereby the most 
recent past is more important than the distant past [15], as well as reset model, distributed continuous computation, and 
synchronized streaming. Applications of data stream algorithms are explored extensively in the computer science literature 
and can be found in sampling (finding quantiles [14], frequent items [19], inverse distribution [7], and range-sums of 
items [2]).

Related to our study is the well-known secretary problem which appeared in the late 1950s and early 1960s (see [9] for 
a historical overview of its origins and [11] which discusses several extensions). It is concerned with the optimal strategy 
or stopping rule so as to maximize the probability of selecting the best job applicant assuming that the selection decision 
can be deferred to the end. Typically we are concerned with maximizing the probability of selecting the best job applicant; 
this can be solved by a maximum selection algorithm which tracks the running maximum.

The problem has fostered the curiosity of numerous researchers and studied extensively in probability theory and deci-
sion theory. Several variants have appeared in the scientific literature, including on rank-based selection and cardinal payoffs 
[6], the infinite secretary problem in [13], secretary problem with uncertain employment in [22], the submodular secretary 
problem in [5], and the temporary secretary problem [10,16], just to mention a few.

The “secretary problem” paradigm has important applications in computer science of which it is worth mentioning the 
recent work of [4] which studies the relation of matroids, secretary problems, and online mechanisms, as well as [17] which 
is investigating applications of a multiple-choice secretary algorithm to online auctions. Obviously the secretary problem 
differs from Persistence in terms of the objective function: in our case the payoff is the sum of processing payoffs, as 
opposed to the maximum for the secretary problem. The two problems also differ in the synchronicity and location of 
arrivals, i.e., what can be accessed and how it is accessed. Nevertheless, the two problems share the inherent difficulty of 
having to make decisions on the spot while missing parts of the input altogether. Notably, and as in solutions for various 
secretary problems, our algorithms rely on threshold-decision choices. Similar algorithms have been observed by cognitive
scientists to be implemented in practice in human behavior [18].

1.2. High level summary of our results & outline of the paper

Our primary focus is the study of the Persistence problem, which we formally define in Section 2.1. Our goal is to 
compare the performance of any primitive (online) algorithm, which is not aware of the input stream, against the optimal 
offline algorithm. In Section 2.2 we present all such possible primitive algorithms that we call Threshold. Subsequently, in 
Section 2.3 we analyze the performance of any Threshold online algorithm for deterministic input streams. Our findings 
indicate that simplistic primitive algorithms are actually optimal (among all online solutions), and are off no more than 1/2 
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