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The computational complexity of the constraint satisfaction problem (CSP) with semilinear 
relations over the reals has gained recent attraction. As a result, its complexity is known for 
all finite sets of semilinear relations containing the relation R+ = {(x, y, z) ∈R

3 | x + y = z}. 
We consider larger and more expressive classes of relations such as semialgebraic and 
o-minimal relations. We present a general result for characterising computationally hard 
fragments and, under certain side conditions, this result implies that polynomial-time 
solvable fragments are only to be found within two limited families of sets of relations. In 
the setting of semialgebraic relation, our result takes on a simplified form and we provide a 
full complexity classification for constraint languages that consist of algebraic varieties. Full 
classifications like the one obtained here for algebraic varieties or the one for semilinear 
relations appear to be rare and we discuss several barriers for obtaining further such 
results. These barriers have strong connections with well-known open problems concerning 
the complexity of various restrictions of convex programming.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The constraint satisfaction problem

The constraint satisfaction problem (CSP) is an important computational problem in many areas of computer science and 
mathematics. In this problem, we are given a set of variables that take their values from a (finite or infinite) domain. The 
assignments to the variables are further subjected to a set of constraints. A constraint is defined by requiring that a tuple 
of variables belongs to some specified relation. The question is whether the variables can be assigned values such that all 
constraints are satisfied. Since even the general finite-domain CSP is NP-hard, the complexity of CSPs is often studied by 
introducing an additional parameter, a set � of allowed relations, known as a constraint language (or template). This leads to a 
problem CSP(�) where the relations of all constraints in the input are required to come from �. This way of parameterizing 
constraint satisfaction problems has proved to be very fruitful for both finite and infinite domains. In the sequel, when we 
talk about a CSP, we will mean a problem CSP(�) for some fixed �.

The complexity of finite-domain CSPs has been extensively investigated, beginning with Schaefer [31]. This has lead to 
the development of a set of standard tools, including the powerful universal-algebraic approach [12]. Much of this effort has 
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been devoted to the Feder–Vardi Dichotomy Conjecture [14] which posits that every finite-domain CSP is either polynomial-
time solvable or NP-complete. This conjecture has recently been resolved in the positive in two independent works [11,
35].

Infinite-domain CSPs, on the other hand, constitute a much more diverse set of problems: Every computational problem 
is polynomial-time equivalent to some infinite-domain CSP [4]. Obtaining a full understanding of their computational com-
plexity is thus too ambitious. Instead, restricted classes of problems are studied. For example, one can consider CSPs over 
numeric domains, such as the reals, the rationals, or the integers, with constraints derived from arithmetic operations and 
the natural order on these domains. We refer the reader to [10] for a recent survey of such CSPs.

In this article, we study CSPs over the reals with constraints based on o-minimal and in particular semialgebraic relations. 
The point of departure of our investigation is recent progress on the project of classifying semilinear CSPs. We describe this 
next.

1.2. Semilinear CSPs

A relation is semilinear if it can be written as a finite union of finite intersections of open and closed half-spaces over, 
for instance, the reals, the rationals or the integers. Let S L X [Y ] denote the set of semilinear relations with domain X and 
coefficients in Y . We will mainly consider S LR[Q]; this set of relations equals the set of first-order definable relations over 
{+, ≤, {1}} [15].

Characterising the polynomial-time solvable cases of S LR[Q] is a challenging task. The construction presented in [21, Sec-
tion 6.3] proves the following: for every finite constraint language � over a finite domain, there exists a finite �′ ⊆ S LR[Q]
such that CSP(�) and CSP(�′) are polynomial-time equivalent problems. Hence, the classification task of semilinear CSPs is 
inextricably linked to the classification task of finite-domain CSPs, and thereby to the Feder–Vardi dichotomy conjecture. 
We also observe that the complexity of every finite temporal constraint language would be determined as a by-product of a 
full classification of S LR[Q]. A temporal constraint language is a constraint language that is first-order definable in (Q; <). 
The complexity of temporal constraint languages has been fully determined [7] and the polynomial-time solvable cases fall 
into nine different categories. The proof is complex and makes heavy use of the universal-algebraic approach.

One way of obtaining classes of semilinear constraint languages that are more manageable is to restrict attention to 
expansions of certain natural sets of relations. One such choice is the set �lin = {R+, ≤, {1}}, where R+ = {(x, y, z) ∈ R3 |
x + y = z}. Studying the computational complexity of expansions of �lin is well motivated by the fact that CSP(�lin) is 
polynomial-time many-one equivalent to the linear programming feasibility problem [5]. This direction has been pursued 
in a number of recent works [5,6,21,22]. A complete classification for semilinear expansions of �lin was obtained in [5]. 
This was generalised to semilinear expansions of {R+} by Jonsson and Thapper [23]. Here, we describe an intermediate 
classification for semilinear expansions of {R+, {1}} [22].

A relation is primitive positive (pp) definable from a constraint language � if it can be expressed using existential quan-
tification over conjunctions of atoms. The importance of pp-definability is explained by Lemma 4 below.

We say that a relation R ⊆ Rk is essentially convex if for all p, q ∈ R there are only finitely many points on the line 
segment between p and q that are not in R . A BNU (for bounded, non-constant, and unary) is a bounded unary relation that 
contains more than one point.

Theorem 1 (Jonsson and Thapper [22]). Let {R+, {1}} ⊆ � ⊆ S LR[Q] be a finite constraint language. If

1. � contains a relation that is not essentially convex, and
2. � can primitive positively define a BNU relation,

then CSP(�) is NP-hard. Otherwise, CSP(�) is tractable.

Our goal will be to extend Theorem 1 as far as possible to semialgebraic and o-minimal constraint languages. We say 
that a relation R ⊆ Rk is semialgebraic if it can be first-order defined in {+, ·, ≤} with parameters in R. The classical 
Tarski–Seidenberg theorem [33] implies that semialgebraic constraint languages have a clear geometric interpretation: every 
semialgebraic relation can be written as a finite union of solution sets of strict and non-strict polynomial inequalities. 
Semialgebraic relations appear in many different contexts within mathematics and computer science (cf. the textbook by 
Basu, Pollack, and Roy [3]).

A constraint language � that contains a total ordering of the domain R is called o-minimal if every first-order definable 
set (with parameters from R) can be represented as a union of finitely many intervals and points. Structures that are 
o-minimal have been studied thoroughly in model theory (cf. van den Dries [34] and Macpherson [26]). A well-known class 
of relations that give rise to o-minimal but not semialgebraic constraint languages is the set of Semi-Pfaffian relations, cf. 
Khovanskii [24]. A concrete example of a semi-Pfaffian constraint language that is not semialgebraic is SAR[R] ∪ {(x, y) ∈
R2 | y = ex}.
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