
Accepted Manuscript

On the complexity of basic abstractions to implement consensus

Claire Capdevielle, Colette Johnen, Alessia Milani

PII: S0304-3975(18)30005-7
DOI: https://doi.org/10.1016/j.tcs.2017.12.039
Reference: TCS 11442

To appear in: Theoretical Computer Science

Received date: 28 March 2017
Revised date: 15 November 2017
Accepted date: 27 December 2017

Please cite this article in press as: C. Capdevielle et al., On the complexity of basic abstractions to implement consensus, Theoret. Comput.
Sci. (2018), https://doi.org/10.1016/j.tcs.2017.12.039

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.tcs.2017.12.039


On the Complexity of Basic Abstractions to Implement1

Consensus2

Claire Capdeviellea, Colette Johnena,∗, Alessia Milania3

aUniv. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France4

Abstract5

Consensus is one of the central distributed abstractions. By enabling a collection of pro-6

cesses to agree on one of the values they propose, consensus can be used to implement any7

generic replicated service in a consistent and fault-tolerant way. Therefore, complexity of8

consensus implementations has become one of the most important topics in the theory of9

distributed computing. Several concurrent objects have been proposed as building blocks10

to implement obstruction-free consensus or wait-free consensus in distributed systems11

augmented with failure detectors or strong synchronization primitives.12

In this paper we study an important subset of these objects : adopt-commit [1],
conflict-detector [2], value-splitter [3] and grafarius [4]. We show that while some of these
objects (adopt-commits and conflict-detectors) ensure a superset of the properties ensured
by the others (value-splitter and grafarius), their space and individual step complexity
is the same if implemented anonymously (the algorithm does not use process IDs). On
the other hand, adopt-commit and conflict-detector objects have a larger complexity if
we consider non anonymous implementations.

Keywords: Distributed computing, shared memory, consensus, wait-freedom,13

complexity, adopt-commit, conflict-detector, value-splitter, grafarius14

1. Introduction15

Consensus is one of the central abstractions in distributed computing since it can be16

used to implement any generic replicated service in a consistent and fault-tolerant way.17

In particular, consensus requires that a collection of processes agree on one of the values18

they propose.19

A fundamental result is that consensus cannot be solved deterministically in an asyn-20

chronous read-write shared memory system where a process is guaranteed to decide in a21

wait-free manner (in a finite number of its own steps) [6, 7]. The difficulty stems from22

handling contended executions. Due to the importance of consensus in dependable dis-23

tribued computing a lot of work has been devoted to studying how to circumvent this24

impossibility and to compute the complexity of consensus implementations.25

�The results of section 3 have been presented in [5], this short paper does not contain any proof.
∗Corresponding author
Email addresses: claire.capdevielle@labri.fr (Claire Capdevielle),

colette.johnen@labri.fr (Colette Johnen), alessia.milani@labri.fr (Alessia Milani)

Preprint submitted to Elsevier January 11, 2018



Download English Version:

https://daneshyari.com/en/article/6875603

Download Persian Version:

https://daneshyari.com/article/6875603

Daneshyari.com

https://daneshyari.com/en/article/6875603
https://daneshyari.com/article/6875603
https://daneshyari.com

