Theoretical Computer Science ••• (••••) •••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

One-to-one disjoint path covers in digraphs $\stackrel{\text{\tiny{thet}}}{=}$

Huabin Cao, Bicheng Zhang*, Zhiheng Zhou

Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan, 411105, PR China

ARTICLE INFO

Article history: Received 12 June 2017 Received in revised form 26 November 2017 Accepted 5 December 2017 Available online xxxx Communicated by D.-Z. Du

Keywords: Directed graphs Disjoint path cover Minimum semi-degree

1. Introduction

The disjoint path cover (DPC for short) problem arising in many areas such as software testing, database design and code optimization [2,3]. It have been investigated with respect to various special graphs such as hypercubes [4-6], recursive circulants [7-10], cubes of connected graphs [11,12], k-ary n-cubes [13,14] and spanning connected graphs [1]. Recently, Hyeong-Seok Lim, Hee-Chul Kim, and Jung-Heum Park [15] distinguish this problem into many situation such as many-tomany k-DPC, one-to-many k-DPC, paired or unpaired ones and so on.

One of the core subjects in Hamiltonian graph theory is to develop sufficient conditions for a graph to have a Hamiltonian path/cycle. Dirac [16] proved that a graph G of order $n \ge 3$ is Hamiltonian if its minimum degree $\delta \ge \frac{n}{2}$. A graph G is said to be Hamiltonian-connected if there is a Hamiltonian path between every two distinct vertices of G. Motivated by the DPC problem and Hamiltonian connectivity, we consider the degree condition of one-to-one k-DPC problem in digraph.

For basic notation not defined here, the reader could refer to [17]. We write |S| as shorthand for |V(S)| for any subset S of V(D). Sometimes, we write $v \in D$, this means that $v \in V(D)$. When we say path, it always means directed path. When we say disjoint directed path cover, it always means that they don't have common vertex except endpoints.

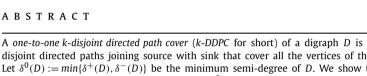
Definition 1 (One-to-one k-disjoint directed path cover). A one-to-one k-disjoint directed path link of a digraph D is a set of k disjoint directed paths joining source to sink. If some one-to-one k-disjoint directed path link cover all vertices of the digraph, we call it a one-to-one k-disjoint directed path cover (k-DDPC for short).

Denote the source and sink by s_0 and t_0 , respectively. Then the one-to-one k-disjoint directed path link joining s_0 and t_0 sometimes is called by s_0 -to- t_0 k-disjoint directed path link.

Corresponding author.

https://doi.org/10.1016/j.tcs.2017.12.006 0304-3975/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: H. Cao et al., One-to-one disjoint path covers in digraphs, Theoret. Comput. Sci. (2018), https://doi.org/10.1016/j.tcs.2017.12.006



A one-to-one k-disjoint directed path cover (k-DDPC for short) of a digraph D is a set of k disjoint directed paths joining source with sink that cover all the vertices of the digraph. Let $\delta^0(D) := \min\{\delta^+(D), \delta^-(D)\}$ be the minimum semi-degree of D. We show that every digraph D of sufficiently large order n with $\delta^0(D) \ge \lceil (n+k+1)/2 \rceil$ contains a one-toone k-DDPC for any given one distinct source-sink. The undirected version and a Ore-type degree conditions of this result was proved earlier [1].

© 2017 Elsevier B.V. All rights reserved.

The paper is supported by Hunan Province College Students Research Learning and Innovative Experiment project (2016SJ017).

E-mail addresses: 2014750117@smail.xtu.edu.cn (H. Cao), zhangbicheng@xtu.edu.cn (B. Zhang), 2013701218@smail.xtu.edu.cn (Z. Zhou).

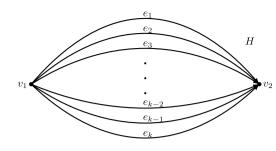


Fig. 1. There are k edges from v_1 to v_2 in H.

Definition 2. A digraph *D* is one-to-one *k*-disjoint directed path coverable if for any given distinct source s_0 and sink t_0 , there exist a s_0 -to- t_0 *k*-DDPC in *D*.

In this paper, we give the minimum semi-degree condition in the directed graph version of one-to-one *k-DPC* problem for every sufficiently large digraph *D*, more formally:

Theorem 1. For every $k \ge 2$, there is an integer $n_0 = n_0(k)$ such that every digraph D on $n \ge n_0$ vertices with $\delta^0(D) \ge \lceil (n+k+1)/2 \rceil$ is one-to-one k-disjoint directed path coverable.

Our proof shows that one can take $n_0(k) = Ck^9$ in which *C* is a sufficiently large constant.

2. Definitions and auxiliary facts

2

Let D_1 be a subgraph of D and vertex $a \in V(D)$. Let $N_{D_1}^+(a)$ denote the out neighbourhood of vertex a in $V(D_1) \setminus \{a\}$, i.e. $N_{D_1}^+(a) = \{v \in V(D_1) \setminus \{a\}: av \in E(D)\}$. We define $N_{D_1}^-(a)$ similarly. Moreover for any subset A of V(D), we define $N_{D_1}^+(A)$ and $N_{D_1}^-(A)$ similarly. For any disjoint vertex set X and Y, if $x \in X$ and $y \in Y$, then the edge xy is an X-Y edge. The set of all X-Y edges is denoted by E(X, Y). The number of edges in E(X, Y) is denoted by e(X, Y).

Theorem 2. ([18]) A digraph D of order n is Hamiltonian connected if $d_D^+(x) + d_D^-(y) \ge n + 1$ whenever $xy \notin E(D)$.

The next result of Michael Ferrara, Michael Jacobson and Florian Pfender [19] gives a sufficient condition for a digraph to be strongly *k*-connected.

A digraph *D* is *H*-linked if every injective mapping $f : V(H) \rightarrow V(D)$ can be extended to an *H*-subdivision in *D*.

Theorem 3. ([19]) Let *H* be a (multi)digraph. Digraph *D* is *H*-linked if $\delta^0(D) \ge \max\{\lceil \frac{1}{2}(|D| + \vec{b}_1(H) - 2)\rceil, 34 | E(H)| + n_0(H)\}$, where $\vec{b}_1(H)$ denotes the maxima of $\vec{b}_{\mathcal{P}}^1(H) = |E(A \cup L_1 \cup L_2, B \cup L_1 \cup L_3)| + |E(B \cup R_1 \cup R_2, A \cup R_1 \cup R_3)| + |C| + \min\{|R| - |L_1|, |L| - |R_1|, |L_2| + |R_2|, |L_3| + |R_3|\}$ over all partition $\mathcal{P} = (A, B, C, L_1, L_2, L_3, R_1, R_2, R_3)$ of *V*(*H*), $n_0(H)$ denotes the number of isolated vertices in *H*. This result is sharp whenever the first of the two bounds applies.

Let *H* is a multidigraph and |V(H)| = 2, |E(H)| = k (see Fig. 1).

In this case, we obtain $b_1(H) = k$ by setting $L_2 = \{v_1\}, L_3 = \{v_2\}$. Note that digraph *D* is *H*-linked if and only if for every paired vertices $x, y \in D$, there are *k* disjoint paths from *x* to *y* in *D*, i.e. *D* is strongly *k*-connected. So we get the next corollary.

Corollary 4. Let *D* be a digraph and $k \ge 2$. If $|D| \ge 80k$ and $\delta^0(D) \ge \lceil \frac{|D|+k}{2} \rceil - 1$, then digraph *D* is strongly *k*-connected.

3. Preliminary results

Assume digraph *D* satisfy the hypotheses of Theorem 1. Corollary 4 implies the existence of an *one-to-one k*-disjoint path link in *D*. Let *L* be a maximum one-to-one *k*-disjoint path link (the *k* paths including as most vertices as possible) and suppose that *L* is not *one-to-one k*-DDPC. We denote the subdigraph of *D* induced by $V(D) \setminus V(L)$ by *H*. Our purpose is to find a longer *one-to-one k*-disjoint path link by modifying *L* (yielding a contradiction). In this section, we prove some lemmas and deduce some corollaries for preparation of our proof of Theorem 1.

Given $i \in \mathbb{N}$, let $F_i := \{x \in L : d_H^-(x) \ge i\}$, $T_i := \{x \in L : d_H^+(x) \ge i\}$ (let $F_1 = F$, $T_1 = T$). For a vertex x belongs to $V(P_i) \setminus \{s_0\}$, we define its previous vertex by x^- . There is a vertex $x \in V(P_i) \setminus \{t_0\}$, we define its next vertex by x^+ . Let $F_i^- := \{x^- : x \in V(P_i) \setminus \{t_0\}, x \in V(P_i) \setminus V(P_i) \setminus V(P_i) \setminus \{t_0\}, x \in V(P_i) \setminus \{t_0\}, x \in V(P_i) \setminus V(P_i$

Download English Version:

https://daneshyari.com/en/article/6875609

Download Persian Version:

https://daneshyari.com/article/6875609

Daneshyari.com