Theoretical Computer Science ••• (••••) •••-•••

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the existence of a cherry-picking sequence

Janosch Döcker^a, Simone Linz^{b,*}

^a Department of Computer Science, University of Tübingen, Germany

^b Department of Computer Science, University of Auckland, New Zealand

ARTICLE INFO

Article history: Received 21 August 2017 Received in revised form 30 November 2017 Accepted 5 December 2017 Available online xxxx Communicated by T. Calamoneri

Keywords: 2P2N-3-SAT Cherry Cherry-picking sequence Intermezzo Phylogenetic tree Temporal phylogenetic network

ABSTRACT

Recently, the minimum number of reticulation events that is required to simultaneously embed a collection \mathcal{P} of rooted binary phylogenetic trees into a so-called temporal network has been characterized in terms of cherry-picking sequences. Such a sequence is a particular ordering on the leaves of the trees in \mathcal{P} . However, it is well-known that not all collections of phylogenetic trees have a cherry-picking sequence. In this paper, we show that the problem of deciding whether or not \mathcal{P} has a cherry-picking sequence is NP-complete for when \mathcal{P} contains at least eight rooted binary phylogenetic trees. Moreover, we use automata theory to show that the problem can be solved in polynomial time if the number of trees in \mathcal{P} and the number of cherries in each such tree are bounded by a constant.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

To represent evolutionary relationships among species, phylogenetic trees have long been a powerful tool. However, as we now not only acknowledge speciation but also non-tree-like processes such as hybridization and lateral gene transfer to be driving forces in the evolution of certain groups of organisms (e.g. bacteria, plants, and fish) [16,20], phylogenetic networks become more widely used to represent ancestral histories. A phylogenetic network is a generalization of a rooted phylogenetic tree. More precisely, such a network is a rooted directed acyclic graph whose leaves are labeled [14].

The following optimization problem, which is biologically relevant and mathematically challenging, motivates much of the theoretical work that has been done in reconstructing phylogenetic networks from phylogenetic trees. Given a collection \mathcal{P} of rooted binary phylogenetic trees on a set of species such that \mathcal{P} correctly represents the tree-like evolution of different parts of the species' genomes, what is the smallest number of reticulation events that is required to simultaneously embed the trees in \mathcal{P} into a phylogenetic network? Here, reticulation events are collectively referring to all non-tree-like events and they are represented by vertices in a phylogenetic network whose in-degree is at least two. Without any structural constraints on a phylogenetic network, it is well-known that \mathcal{P} can always be embedded into such a network [2,19] and, hence, the optimization problem is well-defined. Moreover, despite the problem being NP-hard [4], even for when $|\mathcal{P}| = 2$, several exact algorithms have been developed that, given two rooted phylogenetic trees, construct a phylogenetic network whose number of reticulation events that embed both trees [1,7,18,22].

Motivated by the introduction of temporal networks [3,17], which are phylogenetic networks that satisfy several time constraints, Humphries et al. [12,13] recently investigated the special case of the aforementioned optimization problem for

* Corresponding author. E-mail addresses: janosch.doecker@uni-tuebingen.de (J. Döcker), s.linz@auckland.ac.nz (S. Linz).

https://doi.org/10.1016/j.tcs.2017.12.005 0304-3975/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: J. Döcker, S. Linz, On the existence of a cherry-picking sequence, Theoret. Comput. Sci. (2018), https://doi.org/10.1016/j.tcs.2017.12.005

TCS:11408

Doctopic: Algorithms, automata, complexity and games ARTICLE IN PRESS

J. Döcker, S. Linz / Theoretical Computer Science ••• (••••) •••-•••

when one is interested in minimizing the number of reticulation events over the smaller space of all temporal networks that embed a given collection of rooted binary phylogenetic trees. More precisely, in the context of their two papers, the authors considered *temporal networks* to be phylogenetic networks that satisfy the following three constraints:

(1) speciation events occur successively,

2

- (2) reticulation events occur instantaneously, and
- (3) each non-leaf vertex has a child whose in-degree is one.

The second constraint implies that the three species that are involved in a reticulation event, i.e. the new species resulting from this event and its two distinct parents, must coexist in time. Moreover, a phylogenetic network that satisfies the third constraint (but not necessarily the first two constraints) is referred to as a *tree-child* network in the literature [6]. Intuitively, if a phylogenetic network \mathcal{N} is temporal, then one can assign a time stamp to each of its vertices such that the following holds for each edge (u, v) in \mathcal{N} . If v is a reticulation, then the time stamp assigned to u is the same as the time stamp assigned to v. Otherwise, the time stamp assigned to v is strictly greater than that assigned to u. Baroni et al. [3] showed that it can be checked in polynomial time whether or not a given phylogenetic network satisfies the first two constraints.

Humphries et al. [12] have established a new characterization to compute the minimum number of reticulation events that is needed to simultaneously embed an arbitrarily large collection \mathcal{P} of rooted binary phylogenetic trees into a temporal network. This characterization, which is formally defined in Section 2, is in terms of *cherries*, and the existence of a particular type of sequence on the leaves of the trees, called a *cherry-picking sequence*. It was shown that such a sequence for \mathcal{P} exists if and only if the trees in \mathcal{P} can simultaneously be embedded into a temporal network [12, Theorem 1]. Moreover, a cherry-picking sequence for \mathcal{P} can be exploited further to compute the minimum number of reticulation events that is needed over all temporal networks. Importantly, not every collection \mathcal{P} is guaranteed to have a solution, i.e. there may be no cherry-picking sequence for \mathcal{P} and, hence no temporal network that embeds all trees in \mathcal{P} . It was left as an open problem by Humphries et al. [12] to analyze the computational complexity of deciding whether or not \mathcal{P} has a cherry-picking sequence for when $|\mathcal{P}| = 2$.

In this paper, we make progress towards this question and show that it is NP-complete to decide if \mathcal{P} has a cherrypicking sequence for when $|\mathcal{P}| \ge 8$. Translated into the language of phylogenetic networks, this result directly implies that it is computationally hard to decide if a collection of at least eight rooted binary phylogenetic trees can simultaneously be embedded into a temporal network. To establish our result, we use a reduction from a variant of the INTERMEZZO problem [9]. On a more positive note, we show that deciding if \mathcal{P} has a cherry-picking sequence can be done in polynomial time if the number of trees and the number of cherries in each such tree are bounded by a constant. To this end, we explore connections between phylogenetic trees and automata theory and show how the problem at hand can be solved by using a deterministic finite automaton.

The remainder of the paper is organized as follows. The next section contains notation and terminology that is used throughout the paper. Section 3 establishes NP-completeness of a variant of the INTERMEZZO problem which is then, in turn, used in Section 4 to show that it is NP-complete to decide if \mathcal{P} has a cherry-picking sequence for when $|\mathcal{P}| \ge 8$. In Section 5, we show that deciding if \mathcal{P} has a cherry-picking sequence is polynomial-time solvable if the number of cherries in each tree and the size of \mathcal{P} are bounded by a constant. We finish the paper with some concluding remarks in Section 6.

2. Preliminaries

This section provides notation and terminology that is used in the subsequent sections. Throughout this paper, X denotes a finite set.

Phylogenetic trees. A rooted binary phylogenetic X-tree \mathcal{T} is a rooted tree with leaf set X and, apart from the root which has degree two, all interior vertices have degree three. Furthermore, a pair of leaves $\{a, b\}$ of \mathcal{T} is called a *cherry* if a and b are leaves that are adjacent to a common vertex. Note that every rooted binary phylogenetic tree has at least one cherry. We denote by $c_{\mathcal{T}}$ the number of cherries in \mathcal{T} . We now turn to a rooted binary phylogenetic tree with exactly one cherry. More precisely, we call \mathcal{T} a *caterpillar* if $|X| = n \ge 2$ and the elements in X can be ordered, say x_1, x_2, \ldots, x_n , so that $\{x_1, x_2\}$ is a cherry and, if p_i denotes the parent of x_i , then, for all $i \in \{3, 4, \ldots, n\}$, we have (p_i, p_{i-1}) as an edge in \mathcal{T} , in which case we denote the caterpillar by (x_1, x_2, \ldots, x_n) . To illustrate, Fig. 1 shows the caterpillar $(D_1, D_2, \ldots, D_{|A'|})$ with cherry $\{D_1, D_2\}$. Two rooted binary phylogenetic X-trees \mathcal{T} and \mathcal{T}' are said to be *isomorphic* if the identity map on X induces a graph isomorphism on the underlying trees.

Subtrees. Now, let \mathcal{T} be a rooted binary phylogenetic *X*-tree, and let $X' = \{x_1, x_2, \ldots, x_k\}$ be a subset of *X*. The minimal rooted subtree of \mathcal{T} that connects all vertices in X' is denoted by $\mathcal{T}(X')$. Furthermore, the rooted binary phylogenetic tree obtained from $\mathcal{T}(X')$ by contracting all non-root degree-2 vertices is the *restriction of* \mathcal{T} to X' and is denoted by $\mathcal{T}|X'$. We also write $\mathcal{T}[-x_1, x_2, \ldots, x_k]$ or $\mathcal{T}[-X']$ for short to denote $\mathcal{T}|(X - X')$. For a set $\mathcal{P} = \{\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_m\}$ of rooted binary phylogenetic *X*-trees, we write $\mathcal{P}|X'$ (resp. $\mathcal{P}[-X']$) when referring to the set $\{\mathcal{T}_1|X', \mathcal{T}_2|X', \ldots, \mathcal{T}_m|X'\}$ (resp. $\{\mathcal{T}_1[-X'], \mathcal{T}_2[-X'], \ldots, \mathcal{T}_m[-X']\}$). Lastly, a rooted binary phylogenetic tree is *pendant* in \mathcal{T} if it can be detached from \mathcal{T} by deleting a single edge.

Download English Version:

https://daneshyari.com/en/article/6875610

Download Persian Version:

https://daneshyari.com/article/6875610

Daneshyari.com