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We consider the algorithmic problem of generating each subset of [n] := {1, 2, . . . , n}
whose size is in some interval [k, l], 0 ≤ k ≤ l ≤ n, exactly once (cyclically) by repeatedly 
adding or removing a single element, or by exchanging a single element. For k = 0
and l = n this is the classical problem of generating all 2n subsets of [n] by element 
additions/removals, and for k = l this is the classical problem of generating all 

(n
k

)
subsets 

of [n] by element exchanges. We prove the existence of such cyclic minimum-change 
enumerations for a large range of values n, k, and l, improving upon and generalizing 
several previous results. For all these existential results we provide optimal algorithms to 
compute the corresponding Gray codes in constant O(1) time per generated set and O(n)

space. Rephrased in terms of graph theory, our results establish the existence of (almost) 
Hamilton cycles in the subgraph of the n-dimensional cube Q n induced by all levels 
[k, l]. We reduce all remaining open cases to a generalized version of the middle levels 
conjecture, which asserts that the subgraph of Q 2k+1 induced by all levels [k − c, k + 1 + c], 
c ∈ {0, 1, . . . , k}, has a Hamilton cycle. We also prove an approximate version of this 
generalized conjecture, showing that this graph has a cycle that visits a (1 − o(1))-fraction 
of all vertices.

© 2017 Published by Elsevier B.V.

1. Introduction

Generating all objects in a combinatorial class such as permutations, subsets, combinations, partitions, trees, strings etc. 
is one of the oldest and most fundamental algorithmic problems, and such generation algorithms appear as core building 
blocks in a wide range of practical applications, see the survey [30]. In fact, half of the most recent volume [19] of Donald 
Knuth’s seminal series The Art of Computer Programming is devoted entirely to this fundamental subject. The ultimate goal 
for algorithms that efficiently generate each object of a particular combinatorial class exactly once is to generate each new 
object in constant time. Such optimal algorithms are sometimes called loopless algorithms, a term coined by Ehrlich in his 
influential paper [8]. Note that a constant-time algorithm requires in particular that consecutively generated objects differ 
only in a constant amount, e.g., in a single transposition of a permutation, in adding or removing a single element from a 
set, or in a single tree rotation operation. These types of orderings have become known as combinatorial Gray codes. Here 
are two fundamental examples for this kind of generation problems: (1) The so-called reflected Gray code is a method to 
generate all 2n many subsets of [n] := {1, 2, . . . , n} by repeatedly adding or removing a single element. It is named after 

✩ An extended abstract of this paper has appeared in the Proceedings of the 34th International Symposium on Theoretical Aspects of Computer Science 
(STACS 2017) [12].
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Frank Gray, a physicist and researcher at Bell Labs, and appears in his patent [13]. The reflected Gray code has many 
interesting properties, see [19, Section 7.2.1.1], and there is a simple loopless algorithm to compute it [8,1]. (2) Of similar 
importance in practice is the problem of generating all 

(n
k

)
many k-element subsets of [n] by repeatedly exchanging a single 

element. Also for this problem, loopless algorithms are well-known [34,8,1,10,9,27,3,17] (see also [19, Section 7.2.1.3]).
In this work we consider far-ranging generalizations of the classical problems (1) and (2). Specifically, we consider the 

algorithmic problem of generating all, or almost all, subsets of [n] whose size is in some interval [k, l], where 0 ≤ k ≤ l ≤ n, 
by repeatedly adding or removing a single element, or by exchanging a single element, as further detailed later. The classical 
problems (1) and (2) can be seen as the special cases where k = 0 and l = n, or where k = l, respectively. The entire 
parameter range in between those special cases offers plenty of room for surprising discoveries and hard research problems, 
as Fig. 2 illustrates.

In a computer a subset of [n] is conveniently represented by the corresponding characteristic bitstring x of length n, 
where all the 1s of x correspond to the elements contained in the set, and the 0s to the elements not contained in the set. 
E.g., for n = 5 the subset {1, 2, 5} corresponds to the bitstring 11001. The aforementioned subset generation problems can 
thus be rephrased as Hamilton cycle problems in subgraphs of the cube Q n , the graph that has as vertices all bitstrings of 
length n, with an edge between any two vertices, i.e., bitstrings, that differ in exactly one bit. We refer to the number of 1s 
in a bitstring x as the weight of x, and we refer to the vertices of Q n with weight k as the k-th level of Q n . Note that there are (n

k

)
vertices on level k. Moreover, we let Q n,[k,l], 0 ≤ k ≤ l ≤ n, denote the subgraph of Q n induced by all levels [k, l]. In terms 

of sets, the vertices of the cube Q n correspond to subsets of [n], and flipping a bit along an edge corresponds to adding 
or removing a single element. Continuing the previous example, moving from the vertex 11001 to 11101 corresponds to 
adding the element 3 to the set {1, 2, 5}, yielding the set {1, 2, 3, 5}. The weight of a bitstring corresponds to the size of the 
set, and the vertices on level k correspond to all k-element subsets of [n].

One of the hard instances of the aforementioned general enumeration problem in Q n,[k,l] is when n = 2k +1 and l = k +1. 
The existence of a Hamilton cycle in the graph Q 2k+1,[k,k+1] for any k ≥ 1 is asserted by the well-known middle levels 
conjecture, raised independently in the 80’s by Havel [15] and Buck and Wiedemann [2]. The conjecture has also been 
attributed to Dejter, Erdős, Trotter [20] and various others, and also appears in the popular books [35,19,4]. The middle levels 
conjecture has attracted considerable attention over the last 30 years [29,11,32,18,6,20,5,16,14,26,31,28], and a positive 
solution, i.e., an existence proof for a Hamilton cycle in Q 2k+1,[k,k+1] for any k ≥ 1, has been announced only recently.

Theorem 1 ([25]). For any k ≥ 1, the graph Q 2k+1,[k,k+1] has a Hamilton cycle.

The following generalization of the middle levels conjecture was proposed in [14].

Conjecture 2 ([14]). For any k ≥ 1 and c ∈ {0, 1, . . . , k}, the graph Q 2k+1,[k−c,k+1+c] has a Hamilton cycle.

Conjecture 2 clearly holds for all k ≥ 1 and c = k as Q 2k+1,[0,2k+1] = Q 2k+1, so this is problem (1) from before. It is 
known that the conjecture also holds for all k ≥ 1 and c = k − 1 [7,21] and c = k − 2 [14]. By Theorem 1 we know that it 
also holds for all k ≥ 1 and c = 0. As far as small cases are concerned, computer experiments show that Q 2k+1,[k−c,k+1+c]
indeed has a Hamilton cycle for all k ≤ 6 and all c ∈ {0, 1, . . . , k}. The largest instance in this range not yet covered by the 
aforementioned general results is Q 13,[3,10] with 8008 vertices.

Another generalization of Theorem 1 in a slightly different direction, which still remains a special case in our general 
framework, is the following result.

Theorem 3 ([24]). For any n ≥ 3 and k ∈ {1, 2, . . . , n −2}, the graph Q n,[k,k+1] has a cycle that visits all vertices in the smaller bipartite 
class.

The idea for the proof of Theorem 3 based on induction over n was first presented in [15]. In that paper, the theorem 
was essentially proved conditional on the validity of the hardest case n = 2k + 1, the middle levels conjecture, which was 
established only much later, see Theorem 1. In [24], Theorem 3 was proved unconditionally, and the proof technique was 
refined further to also prove Hamiltonicity results for the so-called bipartite Kneser graphs, another generalization of the 
middle levels conjecture.

Conjecture 2 and Theorem 3 immediately suggest the following common generalization: For which intervals [k, l] does 
the cube Q n,[k,l] have a Hamilton cycle? The graph Q n,[k,l] is bipartite with the two partition classes given by the parity 
of weight of the vertices, and it is clear that a Hamilton cycle can exist only if the two partition classes have the same 
size, which happens only for odd dimension n and between two symmetric levels k and l = n − k, the case covered by 
Conjecture 2, or for even dimension n and [k, l] = [0, n]. However, we may slightly relax this question, and ask for a long 
cycle. To this end, we denote for any bipartite graph G by v(G) the number of vertices of G , and by δ(G) the difference 
between the larger and the smaller partition class. Note that in any bipartite graph G the length of any cycle is at most 
v(G) − δ(G), i.e., the length of a cycle that visits all vertices in the smaller partition class. We call such a cycle a saturating 
cycle, see Fig. 1 (b). Observe that if both partition classes have the same size, i.e., δ(G) = 0, then a saturating cycle is 
a Hamilton cycle. Hence saturating cycles naturally generalize Hamilton cycles for unbalanced bipartite graphs. The right 
common generalization of Conjecture 2 and Theorem 3 therefore is:
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