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Let G1 = (V 1, E1), G2 = (V 2, E2), · · · , Gk = (Vk, Ek) be k graphs, and let f1 : V 1 → V 2, 
f2 : V 2 → V 3, · · · , fk−1 : Vk−1 → Vk , fk : Vk → V 1 be k bijections. The k-composition 
networks G induced by G1, G2, · · · , Gk is the graph with V (G) = ⋃k

t=1 V (Gt) and E(G) =
⋃k

t=1 E(Gt) ∪ {(at , ft(at)) : at ∈ V (Gt) and 1 ≤ t ≤ k}. Many interconnection networks such 
as n-dimensional torus networks, recursive circulant graphs and Cayley graphs on abelian 
groups generated by minimal generating sets are special k-composition networks.
The strong matching preclusion number of a graph is the minimum number of edges 
and/or vertices whose deletion results in the remaining graph has neither perfect 
matchings nor almost perfect matchings. In this paper, we study the strong matching 
preclusion number and strong matching preclusion sets for k-composition networks with 
odd order. Our results generalize the main conclusion in [12].

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A matching of a graph is a set of pairwise nonadjacent edges. For a graph with n vertices, a matching M is called a 
perfect matching if its size |M| = n

2 for n is even, or an almost perfect matching if |M| = n−1
2 for n is odd. A graph is matchable

if it has either a perfect matching or an almost perfect matching. Otherwise, it is called not matchable. A set F of edges in a 
graph G is called a matching preclusion set (MP set for short) if G − F is not matchable. The matching preclusion number of G , 
denoted by mp(G), is defined to be the minimum size of all possible such sets of G . The concept of matching preclusion was 
presented by Brigham et al. [2] and further studied in [6,13,15–18,21]. An obvious application of the matching preclusion 
problem was addressed in [2]: when each node of interconnection networks is demanded to have a special partner at any 
time, those that have larger matching preclusion numbers will be robust in the event of link failures.

As an extensive form of matching preclusion, the problem of strong matching preclusion was put forward by Park 
et al. [19] and further studied in [3–5,7–12,20,22]. A set F of vertices and/or edges in a graph G is called a strong matching 
preclusion set (SMP set for short) if G − F is not matchable. The strong matching preclusion number of a graph G , denoted by 
smp(G), is the minimum cardinality of all strong matching preclusion sets of G . The minimum SMP set of G is any SMP set 
whose size is smp(G). We define smp(G) = 0 if G is not matchable.

When a set F of vertices and/or edges is removed from a graph, the set is called a fault set. For any vertex v ∈ V (G), let 
NG(v) be a set of neighboring vertices adjacent to v , and IG (v) be a set of edges incident with v . Clearly, if a graph G with 
an even number of vertices has an isolated vertex, then G has no perfect matchings.
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Proposition 1.1. [19] Given a fault vertex set X(v) ⊆ NG(v) and a fault edge set Y (v) ⊆ IG(v), X(v) ∪ Y (v) is an SMP set of G if (a) 
w ∈ X(v) if and only if (v, w) /∈ Y (v) for every w ∈ NG(v), and (b) the number of vertices in G\(X(v) ∪ Y (v)) is even.

Any SMP set constructed as specified in Proposition 1.1 is called trivial. If every minimum SMP set of G is trivial, then 
G is called super strong matched. It is easy to see that, for an arbitrary vertex of degree at least one, there always exists a 
trivial SMP set that isolates the vertex. This observation leads to the following fact.

Proposition 1.2. [19] For any graph G with no isolated vertices, smp(G) ≤ δ(G), where δ(G) is the minimum degree of G.

If smp(G) = δ(G), then G is called maximally strong matched.

2. Preliminaries

Let G1 = (V 1, E1), G2 = (V 2, E2), · · · , Gk = (Vk, Ek) be k graphs, and let f1 : V 1 → V 2, f2 : V 2 → V 3, · · · , fk−1 :
Vk−1 → Vk , fk : Vk → V 1 be k bijections. The k-composition networks G induced by G1, G2, · · · , Gk is the graph with 
V (G) = ⋃k

t=1 V (Gt) and E(G) = ⋃k
t=1 E(Gt) ∪ {(at , ft(at)) : at ∈ V (Gt) and 1 ≤ t ≤ k}. Many interconnection networks such 

as n-dimensional torus networks, recursive circulant graphs and Cayley graphs on abelian groups generated by minimal 
generating sets are special k-composition networks.

Let G be a k-composition networks induced by G1, G2, · · · , Gk . For any vertex ai ∈ V (Gi), let f i(ai) = ai+1 for 1 ≤ i ≤ k −1
and fk(ak) = ac

1, f1(ac
1) = ac

2, f −1
k (a1) = āk , f −1

k−1(āk) = āk−1. Note that ac
1 may be not equal to a1, and āk may be not equal 

to ak . For 1 ≤ i, j ≤ k, we use [i, j] to denote a set of integers: [i, j] = {l : i ≤ l ≤ j} if i < j, and [i, j] = {l : i ≤ l ≤ k or 1 ≤
l ≤ j} if i > j. Graph G[i, j] is the subgraph of G , which is induced by {al : al ∈ V (Gl), l ∈ [i, j]}. Let Mi,i+1 = {(ai, ai+1) : ai ∈
V (Gi) and i ∈ [1, k − 1]} and Mk,1 (or Mk,k+1) = {(ak, ac

1) : ak ∈ V (Gk)}. Clearly, Mt,t+1 is a perfect matching of G[t, t + 1] for 
each t ∈ [1, k].

Let F and F ′ be fault set and fault vertex set of G , respectively. Assume Ft = F ∩ {V (Gt) ∪ E(Gt)}, F ′
t = F ′ ∩ V (Gt) and 

Ft,t+1 are fault edge sets in Mt,t+1 for each t ∈ [1, k]. Clearly, F = (
⋃k

t=1 Ft) ∪ (
⋃k

t=1 Ft,t+1). The fault set in F but not in Ft
is denoted by F\Ft . The number of vertices of a graph G is its order, written |G|.

3. Main results

In this paper, we study the strong matching preclusion number and strong matching preclusion sets for k-composition 
networks with odd order, and obtain the following result:

Theorem 3.1. Let G be a k-composition networks induced by G1, G2 , · · · , Gk, where k(≥ 3) is an odd integer. Assume Gt is an r-regular 
connected graph such that r(≥ 4) is even and |Gt |(≥ r + 5) is odd for each t ∈ [1, k]. If Gt is maximally strong matched for each 
t ∈ [1, k], then G is super strong matched.

For readability of the proof of Theorem 3.1, some subcases in it are solved in Lemma 3.2. For writing convenience, we 
will abbreviate almost perfect matching, perfect matching and perfect matchings to ap-m, p-m and p-ms, respectively. We 
use M(G) and M ′(G) to represent a p-m of G and an ap-m of G , respectively.

Lemma 3.2. Let G be a k-composition networks induced by G1, G2 , · · · , Gk, where k(≥ 3) is an odd integer. Assume, for each t ∈ [1, k], 
Gt is an r-regular connected graph such that r(≥ 4) is even, |Gt |(≥ r + 5) is odd, and smp(Gt) = r. Let F be a fault set of G with 
|F | ≤ r + 2.

• For 1 ≤ i < j ≤ k, G[i, j] − F is matchable if either
(1) |Ft | < r and |Gt − Ft | is even for each t ∈ [i, j], or
(2) |Fi | ≤ r − 1, |F j| ≤ r − 2 and |Ft | ≤ r − 3 for each t ∈ [i + 1, j − 1]. In addition, |Gi − Fi | is odd and |Gt − Ft | is even for each 

t ∈ [i + 1, j − 1]. Particularly, when |Fi| = r − 1, the inequality |Fi,i+1 ∪ Fi+1| ≤ 1 holds, or
(3) |Fi | ≤ r − 1, |F j | ≤ r − 2 and |Ft | ≤ r − 3 for each t ∈ [i + 1, j − 1]. Particularly, when |Fi| = r − 1 and |Gi − Fi | is odd, the 

inequality |Fi,i+1 ∪ Fi+1| ≤ 1 holds.
• For 1 ≤ i < j < l ≤ k, G[i, l] − F is matchable if
(4) |Fi | ≤ r−1, |F j| ≤ r−2, |Fl| ≤ r−2 and |Ft | ≤ r−3 for each t ∈ [i +1, j −1] ∪[ j +1, l −1]. Particularly, when |Fi| = r−1 and 

|Gi − Fi | is odd, the inequality |Fi,i+1 ∪ Fi+1| ≤ 1 holds; when |F j | = r − 2 and |G[i, j] − F | is odd, the inequality |F j, j+1 ∪ F j+1| ≤ 1
holds.

Proof. (1) Since |Ft | < smp(Gt) and |Gt − Ft | is even for each t ∈ [i, j], we see that Gt − Ft has a p-m Mt . So 
⋃ j

t=i Mt is a 
p-m of G[i, j] − F .

(2) We first claim that Gi − Fi has an ap-m Mi that misses a vertex ai and (ai, ai+1) ∈ E(G − F ). If |Fi | ≤ r − 2, by 
|Mi,i+1| − |F | > 1, we can assume (ai, ai+1) ∈ E(G − F ). Since |Fi ∪ {ai}| < smp(Gi) and |Gi − Fi − ai | is even, we see that 
Gi − Fi − ai has a p-m Mi . It follows that Mi is an ap-m of Gi − Fi that misses vertex ai and (ai, ai+1) ∈ E(G − F ). Consider 
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