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Let G be a graph and T be a certain connected subgraph of G . The T -structure 
connectivity κ(G; T ) (resp. T -substructure connectivity κ s(G; T )) of G is the minimum 
number of a set of subgraphs F = {T1, T2, ..., Tm} (resp. F = {T ′

1, T ′
2, ..., T ′

m}) such that 
Ti is isomorphic to T (resp. T ′

i is a connected subgraph of T ) for every 1 ≤ i ≤ m, and 
F ’s removal will disconnect G . Let Q n and F Q n denote the n-dimensional hypercube and 
folded hypercube, respectively. In [12], the κ(Q n; T ) and κ s(Q n; T ) were determined for 
T ∈ {K1,1, K1,2, K1,3, C4}. In this paper, we generalize the above results by determining 
κ(Q n; T ) and κ s(Q n; T ) for T ∈ {Pk, C2k, K1,4} where 3 ≤ k ≤ n. We also determine 
κ(F Q n; T ) and κ s(F Q n; T ) for T ∈ {Pk, C2k, K1,3} where n ≥ 7 and 2 ≤ k ≤ n.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Interconnection networks play an important role in parallel and distributed systems. An interconnection network can be 
represented by an undirected graph G = (V , E), where each node in V corresponds to a processor, and every edge in E
corresponds to a communication link.

The connectivity κ(G) of a graph G is the minimum number of nodes whose removal leaves the remaining graph discon-
nected or trivial. The connectivity is one of the most important parameters to measure the reliability and fault tolerance of 
an interconnection network [3]. The larger the connectivity is, more reliable the interconnection network is.

However, this parameter has a deficiency. Note that, in the event of a random node failure, it is very unlikely that 
all of the nodes adjacent to a single node fail simultaneously. To more accurately measure the fault tolerance of an in-
terconnection network, Harary [7] introduced the concept of conditional connectivity by attaching some conditions on 
connected components. Furthermore, Latifi et al. [10] generalized the concept conditional connectivity by introducing re-
stricted h-connectivity.

Following this trend, Fábrega [6] proposed the concept of g-extra connectivity. The g-extra connectivity of a graph G , 
denoted by κg(G), is the minimum number of nodes of G whose deletion disconnects G and every remaining component 
has more than g nodes. For the recent results on the g-extra connectivity of graphs see, for example, [2],[9],[17–20] and 
the references therein.
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So far, most researches about network reliability and fault tolerance have concentrated on the effect of individual nodes 
becoming faulty. In other words, it is usually assumed that the status of each individual node v , with regarded to the nodes 
around v , is an independent event. Nevertheless, nodes that are connected could affect one another, and the nodes closer to 
a faulty node are more likely to become faulty (than other distant nodes). It should also be noted that with the development 
of technology, networks and subnetworks are made into chips. That is to say, when any node or nodes on the chip become 
faulty, the whole chip could be considered faulty. All of these motivate the study of fault tolerance of networks from the 
perspective of some structures instead of basing on individual nodes. Under this consideration, Lin et al. [12] introduced the 
concept of structure connectivity and substructure connectivity of graphs.

For graph definition and notation not mentioned here we follow [1]. The neighborhood NG(v) of a node v in a graph G =
(V , E) is the set of nodes adjacent to v . For S ⊂ V , the neighborhood NG (S) of S in G is defined as NG (S) = (∪v∈S NG(v)) −
S . We use Pk = 〈v1, v2, · · · , vk〉 and Ck = 〈v1, v2, · · · , vk, v1〉 to denote a path and a cycle of order k, respectively. For a 
given path Pk , we use P−1

k to define the reverse of Pk , that is, P−1
k = 〈vk, vk−1, · · · , v1〉. For a subgraph H of a graph G , we 

use G − H to denote the subgraph of G induced by V (G) − V (H). For a set F = {T1, T2, ..., Tm}, where each Ti is isomorphic 
to a connected subgraph of G , we use G − F to denote the subgraph of G induced by V (G) − V (T1) − V (T2) − · · · − V (Tm).

Let T be a connected subgraph of a graph G , and let F be a set of subgraphs of G such that every element in F is 
isomorphic to T . Then F is called a T -structure-cut if G − F is disconnected. The T-structure connectivity κ(G; T ) of G is 
defined as the cardinality of a minimum T -structure-cut of G . Similarly, let F be a set of subgraphs of G such that every 
element in F is isomorphic to a connected subgraph of T . Then F is called a T -substructure-cut if G − F is disconnected. 
The T-substructure connectivity κ s(G; T ) of G is defined as the cardinality of a minimum T -substructure-cut of G . By defini-
tion, κ s(G; T ) ≤ κ(G; T ). Note that K1-structure connectivity and K1-substructure connectivity reduce to the classical node 
connectivity.

Lin et al. studied κ(Q n; T ) and κ s(Q n; T ) for the hypercube Q n and T ∈ {K1,1, K1,2, K1,3, C4} [12]. Moreover, Lv et al. 
investigated the Hamiltonian cycle and path embedding problems in k-ary n-cubes based on structure faults [14]. In this 
paper, we generalize the results in [12] and consider similar problems for the folded hypercube F Q n .

The rest of the paper is structured as follows. In Section 2, we determine κ(Q n; T ) and κ s(Q n; T ) for T ∈ {Pk, C2k, K1,4}
where 3 ≤ k ≤ n. In Section 3, we determine κ(F Q n; T ) and κ s(F Q n; T ) for T ∈ {Pk, C2k, K1,3} where n ≥ 7 and 2 ≤ k ≤ n. 
We draw conclusion in Section 4.

2. Hypercubes

The n-dimensional hypercube Q n has the node set consisting of 2n binary strings of length n, two nodes being joined 
by an edge if and only if they differ in exactly one position. The hypercube Q n possesses many attractive properties, for 
example, both diameter and connectivity are n, and it is bipartite and thus contains no odd cycle [8].

For any node u = u1u2...un in Q n , we use ui to denote the neighbor of u in dimension i. Similarly, ui, j is the neighbor 
of ui in dimension j. Obviously, ui, j = u j,i .

In what follows, we will explore T -structure connectivity and T -substructure connectivity of Q n for T ∈ {Pk, C2k, K1,4}
where 3 ≤ k ≤ n. We first supply some lemmas for later use.

Lemma 2.1. [17] Any two nodes in Q n(n ≥ 3) have exactly two common neighbors if they have any.

Lemma 2.2. Let Pk be a path in Q n with 1 ≤ k ≤ n. If v is a node of Q n − Pk, then |N Q n (v) ∩ V (Pk)| ≤ � k
2 .

Proof. Since Q n is triangle free, v can be adjacent to at most one node of any two consecutive nodes on Pk . Thus, the 
lemma follows. �
Lemma 2.3. Let Pk be a path in Q n with 3 ≤ k ≤ n. If u and v are two adjacent nodes of Q n − Pk, then |N Q n ({u, v}) ∩ V (Pk)| ≤ k −1.

Proof. Clearly, |N Q n ({u, v}) ∩ V (Pk)| ≤ k. So it suffices to show that there exists at least one node on Pk , which is adjacent 
to neither u nor v . In deed, since Q n is triangle free and by Lemma 2.1, at least one node of any three consecutive nodes 
on Pk is adjacent to neither u nor v . It implies that |N Q n ({u, v}) ∩ V (Pk)| ≤ k − 1. �

Since Q n is triangle free and by Lemma 2.1, the following lemma is straightforward.

Lemma 2.4. Let K1,r be a star in Q n with 3 ≤ r ≤ n. If u is a node of Q n − K1,r , then |N Q n (u) ∩ V (K1,r)| ≤ 2.

Lemma 2.5. Let K1,r be a star in Q n with 3 ≤ r ≤ n. If u and v are two adjacent nodes of Q n − K1,r , then |N Q n ({u, v}) ∩ V (K1,r)| ≤ 2.

Proof. Let V (K1,r) = {{x, x1, x2, · · · , xr}| (x, xi) ∈ E(Q n) for i ∈ {1, 2, · · · , r}}. By Lemma 2.4, |N Q n (u) ∩ V (K1,r)| ≤ 2. Without 
loss of generality, we may assume that (u, x1), (u, x2) ∈ E(Q n). If (v, x) ∈ E(Q n), then N Q n (u) ∩ N Q n (x) = {x1, x2, v}, which 
contradicts Lemma 2.1. If (v, x j) ∈ E(Q n) for j ∈ {3, · · · , r}, then 〈u, v, x j, x, x1, u〉 forms an odd cycle, a contradiction. �
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