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known algorithm for counting triangulations of S runs in 2(+oM)Vlogn time while that
for counting crossing-free spanning trees runs in 0*(7.125") time. The fastest known, non-
trivial approximation algorithms for the number of triangulations of S and the number
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1. Introduction

By a crossing-free structure in the Euclidean plane, we mean a planar straight-line graph (PSLG), i.e., a plane graph whose
edges {v,u} are represented by properly non-intersecting straight-line segments with endpoints v, u, respectively. Trian-
gulations and crossing-free spanning trees on finite planar point sets are the two most basic examples of crossing-free
structures in the plane, i.e., PSLGs. The problems of counting the number of such structures for a given planar n-point set
belong to the most intriguing in Computational Geometry [2,4,6,8,11,12].

1.1. Counting triangulations

A triangulation of a set S of n points in the Euclidean plane is a PSLG on S with a maximum number of edges. Let F:(S)
stand for the set of all triangulations of S.

The problem of computing the number of triangulations of S, i.e., |F¢(S)|, is easy when S is in convex position. Simply,
by a straightforward recurrence, |F¢(S)| = C;—2, where C is the k-th Catalan number, in this special case. However, in the
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Table 1

Bounds on the number of different types of plane graphs according to [2].
Graph type Lower bound  Reference = Upper bound  Reference
Triangulations Q(2.43™) [12] 0(30M) [11]
Spanning cycles 1 0(54.55™) [13]
Perfect matchings  Q*(2") [5] 0(10.05") [14]
Spanning trees Q*(6.75™) [6] 0(141.07") [8]

general case, the problem of computing the number of triangulations of S is neither known to be #P-hard nor known to
admit a polynomial-time counting algorithm.

It is known that |F(S)| lies between €2(2.43") [12] and O(30") [11]. See also Table 1. Since the so called flip graph
whose nodes are triangulations of S is connected [15], all triangulations of S can be listed in exponential time by a standard
traversal of this graph. When the number of the so called onion layers of the input point set is constant, the number of
triangulations and other crossing-free structures can be determined in polynomial time [3]. Quite recently, Alvarez and
Seidel have presented an elegant algorithm for the number of triangulations of S running in 0*(2") time [4] which is
substantially below the aforementioned lower bound on |F;(S)| (the O* notation suppresses polynomial in n factors).

Also recently, Alvarez, Bringmann, Ray, and Seidel [2] have presented an approximation algorithm for the number of
triangulations of S based on a recursive application of the planar simple cycle separator [10]. Their algorithm runs in

3
subexponential 20718 time and over-counts the number of triangulations by at most a subexponential 20" *vlogn
factor. It also yields a subexponential-time approximation scheme for the base of the number of triangulations of S, i.e.,
for |F[(S)|%. The authors of [2] observe also that just the inequalities €(2.43") < |F;(S)| < 0(30") imply that the quan-
tity 0(+/30 x 2.43") trivially computable in polynomial time approximates |F:(S)| within a large exponential factor of
0(/30/2.43".

Very recently, Marx and Miltzow [9] have presented an algorithm that computes the number of triangulations of S
in n+°M)Vn time. Thus, they have significantly improved the aforementioned 0*(2") upper bound due to Alvarez and
Seidel [4]. Their algorithm relies on planar separators of size O(4/n) in a triangulation similarly as that approximation one
due to Alvarez et al. They identify such separators in a canonical way by a decomposition of the triangulation into nested
layers. They could also extend their algorithm to include counting other crossing-free structures in nA+oVa time, e.g.:
Hamilton cycles, spanning trees, perfect matchings, 3-colorable triangulations, connected structures, cycle decompositions,
quadrangulations, 3-regular structures.

1.2. Counting crossing-free spanning trees

A (crossing-free) spanning tree U on a set S of n points in the Euclidean plane is a connected PSLG on S that is cycle-free,
equivalently, that has n — 1 edges. Let F(S) stand for the set of all crossing-free spanning trees on S.

It is known that |F(S)| lies between (6.75") [6] and 0(141.07") [8]. See also Table 1. The fastest known algorithm for
computing |Fs(S)| runs in 0*(7.125") time [16].

The aforementioned approximation algorithm for |F;(S)| due to Alvarez, Bringmann, Ray, and Seidel can be adapted
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to compute |Fs(S)| approximately within the same asymptotic subexponential 2°®* V19" factor in the same asymptotic

subexponential 20(/nlogn) ime [2]. The adaption also yields a subexponential-time approximation scheme for the base of
1

the number of crossing-free spanning trees on S, i.e., for |Fs(S)|n.

1.3. Our contributions

We take a similar approximation approach to the problems of counting triangulations of S and counting crossing-free
spanning trees on S as Alvarez, Bringmann, Ray, and Seidel in [2]. However, importantly, instead of using recursively the
planar simple cycle separator [10], we shall apply recursively the so called balanced «-cheap I-cuts of independent sets of
triangles within a dynamic programming framework developed by Adamaszek and Wiese in [1]. By using the aforemen-
tioned techniques, the authors of [1] designed the first quasi-polynomial time approximation scheme for the maximum
weight independent set of polygons belonging to the input set of polygons with poly-logarithmically many edges.

Observe that a triangulation of S can be viewed as a maximum independent set of triangles drawn from the set of
all triangles with vertices in S that are free from other points in S (triangles, or in general polygons, are identified with
their open interiors). Also, a crossing-free spanning tree on S can be easily complemented to a full triangulation on S.
These simple observations enable us to use the aforementioned balanced «-cheap I-cuts recursively in order to bound an
approximation factor of our approximation algorithm. The parameter « specifies the maximum fraction of an independent
set of triangles that can be destroyed by the I-cut, which is a polygon with at most [ vertices in a specially constructed set
of points of polynomial size.

Similarly as the approximation algorithm from [2], our algorithm may over-count the true number of triangulations or
crossing-free spanning trees because the same triangulation or spanning tree, respectively, can be partitioned recursively in
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