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The number of triangulations of a planar n point set S is known to be cn , where the 
base c lies between 2.43 and 30. Similarly, the number of crossing-free spanning trees 
on S is known to be dn , where the base d lies between 6.75 and 141.07. The fastest 
known algorithm for counting triangulations of S runs in 2(1+o(1))

√
n log n time while that 

for counting crossing-free spanning trees runs in O ∗(7.125n) time. The fastest known, non-
trivial approximation algorithms for the number of triangulations of S and the number 
of crossing-free spanning trees of S , respectively, run in time subexponential in n. We 
present the first non-trivial approximation algorithms for these numbers running in quasi-
polynomial time. They yield the first quasi-polynomial approximation schemes for the base 
of the number of triangulations of S and the base of the number of crossing-free spanning 
trees on S , respectively.

© 2017 Published by Elsevier B.V.

1. Introduction

By a crossing-free structure in the Euclidean plane, we mean a planar straight-line graph (PSLG), i.e., a plane graph whose 
edges {v, u} are represented by properly non-intersecting straight-line segments with endpoints v , u, respectively. Trian-
gulations and crossing-free spanning trees on finite planar point sets are the two most basic examples of crossing-free 
structures in the plane, i.e., PSLGs. The problems of counting the number of such structures for a given planar n-point set 
belong to the most intriguing in Computational Geometry [2,4,6,8,11,12].

1.1. Counting triangulations

A triangulation of a set S of n points in the Euclidean plane is a PSLG on S with a maximum number of edges. Let Ft(S)

stand for the set of all triangulations of S .
The problem of computing the number of triangulations of S , i.e., |Ft(S)|, is easy when S is in convex position. Simply, 

by a straightforward recurrence, |Ft(S)| = Cn−2, where Ck is the k-th Catalan number, in this special case. However, in the 

✩ An extended abstract of this article appeared in Proceedings of the 42nd International Colloquium on Automata, Languages and Programming (ICALP 2015), 
volume 9134 of Lecture Notes in Computer Science, pp. 785–796, Springer International Publishing Switzerland, 2015.
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Table 1
Bounds on the number of different types of plane graphs according to [2].

Graph type Lower bound Reference Upper bound Reference

Triangulations �(2.43n) [12] O (30n) [11]
Spanning cycles 1 O (54.55n) [13]
Perfect matchings �∗(2n) [5] O (10.05n) [14]
Spanning trees �∗(6.75n) [6] O (141.07n) [8]

general case, the problem of computing the number of triangulations of S is neither known to be #P -hard nor known to 
admit a polynomial-time counting algorithm.

It is known that |Ft(S)| lies between �(2.43n) [12] and O (30n) [11]. See also Table 1. Since the so called flip graph 
whose nodes are triangulations of S is connected [15], all triangulations of S can be listed in exponential time by a standard 
traversal of this graph. When the number of the so called onion layers of the input point set is constant, the number of 
triangulations and other crossing-free structures can be determined in polynomial time [3]. Quite recently, Alvarez and 
Seidel have presented an elegant algorithm for the number of triangulations of S running in O ∗(2n) time [4] which is 
substantially below the aforementioned lower bound on |Ft (S)| (the O ∗ notation suppresses polynomial in n factors).

Also recently, Alvarez, Bringmann, Ray, and Seidel [2] have presented an approximation algorithm for the number of 
triangulations of S based on a recursive application of the planar simple cycle separator [10]. Their algorithm runs in 

subexponential 2O (
√

n log n) time and over-counts the number of triangulations by at most a subexponential 2O (n
3
4
√

log n)

factor. It also yields a subexponential-time approximation scheme for the base of the number of triangulations of S , i.e., 
for |Ft(S)| 1

n . The authors of [2] observe also that just the inequalities �(2.43n) ≤ |Ft(S)| ≤ O (30n) imply that the quan-
tity O (

√
30 × 2.43

n
) trivially computable in polynomial time approximates |Ft(S)| within a large exponential factor of 

O (
√

30/2.43n
).

Very recently, Marx and Miltzow [9] have presented an algorithm that computes the number of triangulations of S
in n(1+o(1))

√
n time. Thus, they have significantly improved the aforementioned O ∗(2n) upper bound due to Alvarez and 

Seidel [4]. Their algorithm relies on planar separators of size O (
√

n) in a triangulation similarly as that approximation one 
due to Alvarez et al. They identify such separators in a canonical way by a decomposition of the triangulation into nested 
layers. They could also extend their algorithm to include counting other crossing-free structures in n(1+o(1))

√
n time, e.g.: 

Hamilton cycles, spanning trees, perfect matchings, 3-colorable triangulations, connected structures, cycle decompositions, 
quadrangulations, 3-regular structures.

1.2. Counting crossing-free spanning trees

A (crossing-free) spanning tree U on a set S of n points in the Euclidean plane is a connected PSLG on S that is cycle-free, 
equivalently, that has n − 1 edges. Let Fs(S) stand for the set of all crossing-free spanning trees on S .

It is known that |Fs(S)| lies between �(6.75n) [6] and O (141.07n) [8]. See also Table 1. The fastest known algorithm for 
computing |Fs(S)| runs in O ∗(7.125n) time [16].

The aforementioned approximation algorithm for |Ft(S)| due to Alvarez, Bringmann, Ray, and Seidel can be adapted 

to compute |Fs(S)| approximately within the same asymptotic subexponential 2O (n
3
4
√

log n) factor in the same asymptotic 
subexponential 2O (

√
n log n) time [2]. The adaption also yields a subexponential-time approximation scheme for the base of 

the number of crossing-free spanning trees on S , i.e., for |Fs(S)| 1
n .

1.3. Our contributions

We take a similar approximation approach to the problems of counting triangulations of S and counting crossing-free 
spanning trees on S as Alvarez, Bringmann, Ray, and Seidel in [2]. However, importantly, instead of using recursively the 
planar simple cycle separator [10], we shall apply recursively the so called balanced α-cheap l-cuts of independent sets of 
triangles within a dynamic programming framework developed by Adamaszek and Wiese in [1]. By using the aforemen-
tioned techniques, the authors of [1] designed the first quasi-polynomial time approximation scheme for the maximum 
weight independent set of polygons belonging to the input set of polygons with poly-logarithmically many edges.

Observe that a triangulation of S can be viewed as a maximum independent set of triangles drawn from the set of 
all triangles with vertices in S that are free from other points in S (triangles, or in general polygons, are identified with 
their open interiors). Also, a crossing-free spanning tree on S can be easily complemented to a full triangulation on S . 
These simple observations enable us to use the aforementioned balanced α-cheap l-cuts recursively in order to bound an 
approximation factor of our approximation algorithm. The parameter α specifies the maximum fraction of an independent 
set of triangles that can be destroyed by the l-cut, which is a polygon with at most l vertices in a specially constructed set 
of points of polynomial size.

Similarly as the approximation algorithm from [2], our algorithm may over-count the true number of triangulations or 
crossing-free spanning trees because the same triangulation or spanning tree, respectively, can be partitioned recursively in 
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