[Theoretical Computer Science](http://dx.doi.org/10.1016/j.tcs.2017.02.016) ••• (••••) •••-•••

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Theoretical Computer Science

TCS:11085

www.elsevier.com/locate/tcs

Constructing an indeterminate string from its associated graph $\overline{\mathbf{r}}$

Joel Helling^a, P.J. Ryan^b, W.F. Smyth^{b,c,1}, Michael Soltys^{a,∗}

^a *Department of Computer Science, California State University Channel Islands, United States*

^b *Algorithms Research Group, Dept. of Computing and Software, McMaster University, Canada*

^c *School of Engineering and Information Technology, Murdoch University, Australia*

A R T I C L E I N F O A B S T R A C T

Article history: Received 21 May 2016 Received in revised form 2 February 2017 Accepted 14 February 2017 Available online xxxx

Keywords: String algorithms Indeterminate strings Cliques Graph labeling

As discussed at length in Christodoulakis et al. (2015) $[3]$, there is a natural one-many correspondence between simple undirected graphs G with vertex set $V = \{1, 2, ..., n\}$ and *indeterminate strings* $x = x[1..n]$ – that is, sequences of subsets of some alphabet Σ . In this paper, given G , we consider the "reverse engineering" problem of computing a corresponding **x** on an alphabet $\Sigma_{\rm min}$ of minimum cardinality. This turns out to be equivalent to the NP-hard problem of computing the *intersection number* of G, thus in turn equivalent to the *clique cover* problem. We describe a heuristic algorithm that computes an approximation to $\Sigma_{\rm min}$ and a corresponding **x**. We give various properties of our algorithm, including some experimental evidence that on average it requires $O(n^2 \log n)$ time. We compare it with other heuristics, and state some conjectures and open problems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we seek to extend the connections between graph theory and stringology explored in [\[3\].](#page--1-0) We consider a **string** $x = x[1..n]$ to be a sequence of **letters** $x[i], 1 \le i \le n$, that are nonempty subsets of a given finite set Σ , called the *alphabet*. If *x*[*i*] is a subset of cardinality 1, it is said to be a *regular* letter; otherwise, *indeterminate*. Similarly, if *x* contains only regular letters, it is said to be *regular*; otherwise, **indeterminate**. For example, on $\Sigma = \{a, b, c\}$, $x = ababc$ is regular,² while $y = \{a, b\}ba\{b, c\}b$ is indeterminate. Indeterminate strings are useful in various application areas, notably bioinformatics, where under certain circumstances DNA sequences can be regarded as indeterminate strings on nucleotides {*a, c, g,t*}. In recent years indeterminate strings have been the subject of much study [\[12,11,17,1\].](#page--1-0)

Given string $x = x[1..n]$, we say that for $1 \le i, j \le n$, $x[i]$ matches $x[j]$ (written $x[i] \approx x[j])$ if and only if $x[i] \cap x[j] \ne \emptyset$. Thus in particular $x[i] = x[j] \Longrightarrow x[i] \approx x[j]$. As defined in [\[3\],](#page--1-0) the **associated graph** $\mathcal{G}_x = (V_x, E_x)$ of x is the simple graph whose vertices are positions 1, 2,..., *n* in **x** and whose edges are the pairs (i, j) such that $\mathbf{x}[i] \approx \mathbf{x}[j]$. Suppose that for some position $i_0 \in 1..n$, $\mathbf{x}[i_0]$ matches $\mathbf{x}[i_1], \mathbf{x}[i_2], \ldots, \mathbf{x}[i_k]$ for some $k \geq 0$, and matches no other elements of \mathbf{x} . We say that position i_0 is **essentially regular** if and only if the entries in positions i_1, i_2, \ldots, i_k match each other pairwise. If every

<http://dx.doi.org/10.1016/j.tcs.2017.02.016> 0304-3975/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: J. Helling et al., Constructing an indeterminate string from its associated graph, Theoret. Comput. Sci. (2017), http://dx.doi.org/10.1016/j.tcs.2017.02.016

[✩] We are grateful to Manolis Christodoulakis and Shu Wang for helpful discussions.

Corresponding author.

E-mail addresses: joel.helling904@csuci.edu (J. Helling), ryanpj@mcmaster.ca (P.J. Ryan), smyth@mcmaster.ca (W.F. Smyth), michael.soltys@csuci.edu (M. Soltys).

¹ Supported in part by a Grant No. 14284 from the Natural Sciences and Engineering Research Council of Canada.

² For singleton sets such as $\{a\}$, $\{b\}$, $\{c\}$, we write *a*, *b*, *c* for simplicity.

Doctopic: Algorithms, automata, complexity and games

2 *J. Helling et al. / Theoretical Computer Science* ••• *(*••••*)* •••*–*•••

position in *x* is essentially regular, we say that *x* itself is *essentially regular*. Hence every essentially regular string can be replaced by an equivalent regular one, and the associated graph G_x is a collection of disjoint cliques if and only if x is essentially regular.

For general indeterminate strings, however, G_x is more interesting. In Section 2 we discuss a conjecture stated in [\[3\],](#page--1-0) that given a finite simple graph G whose maximal cliques have basis B , $|B|$ is the minimum alphabet size of any string x whose associated graph $G_x = G$. We discover that this conjecture is just a reformulation, in a slightly different context, of the problem of computing the intersection number of G , which is NP-hard, and hence computing the minimum alphabet size of any string is also NP-hard. Section [3](#page--1-0) describes an algorithm that approximates a basis of G by assigning symbols to the vertices of cliques until all vertices are labeled, thus effectively computing a string *x* whose associated graph $\mathcal{G}_x = \mathcal{G}$. This is an example of the "reverse engineering" of a data structure, a class of problems initiated in $[8,7]$ for the border array, and extended to other structures in, for example, [\[2,9,4\].](#page--1-0) In Section [4](#page--1-0) we discuss our algorithm's results and execution, especially in the context of other algorithms that perform closely-related computations. Section [5](#page--1-0) discusses a few conjectures and open problems.

2. Maximal cliques in the associated graph G_x

Suppose a collection $\mathcal{F} = F_1, F_2, \ldots, F_n$ of sets is given. Then the *intersection graph* $\mathcal{G}_{\mathcal{F}}$ of \mathcal{F} is a simple undirected graph on $|\mathcal{F}| = n$ vertices 1, 2, ..., n, with an edge (i, j) , $1 \le i, j \le n$, if and only if $F_i \cap F_j \ne \emptyset$. Conversely, it was shown in [\[18\]](#page--1-0) that, given a simple undirected graph G on vertices 1, 2, ..., *n*, a collection F of *n* sets can be found such that G is the intersection graph of F. (For example, for each (i, j) in $\mathcal{G}, i < j$, place a unique symbol $\lambda_{i,j}$ in F_i and F_i .) The **intersection** *number* $\theta(G)$ of G is the smallest number of distinct symbols that can be placed in the sets of F such that $G = G_F$. In our application, the collection $\mathcal F$ becomes a string $\mathbf x = \mathbf x[1..n]$ with $\mathbf x[i] = F_i$ (necessarily nonempty). The associated graph and the intersection graph are thus the same, and we seek a smallest alphabet $\Sigma_{\rm min}$ that produces it. Let $\sigma_{\rm min}=|\Sigma_{\rm min}|$, the cardinality of such an alphabet.

The standard way of efficiently representing a finite simple graph G as an intersection graph is by covering the graph by cliques. Take any set of cliques covering all edges of G . For each vertex v , let F_v be the set of those cliques containing the vertex *v*. Then the intersection graph of ${F_v}$ coincides with G. As a result, the intersection number $\theta(G)$ is equal to the *edge clique cover number* $ec(\mathcal{G})$, the cardinality of a minimum size set of the cliques that covers all the edges of \mathcal{G} . Erdos et al. [\[6,16\]](#page--1-0) proved that $\theta(G) \leq |n^2/4|$, an upper bound that is achieved when G is a triangle-free graph on $|n^2/4|$ edges [\[15\].](#page--1-0) An instructive example is given by the complete bipartite graphs $K_{m,m}$ (for even $n = 2m$) and $K_{m,m+1}$ (for odd $n = 2m + 1$) for which the minimal covering by cliques consists of all edges, the number of which is precisely $|n^2/4|$.

Erdős et al. use coverings that cover all vertices as well as all edges. If G has no isolated points, this is equivalent to the "edge covering" approach discussed above. For this case, they prove that $ec(G) \leq \lfloor n^2/4 \rfloor$ and that one need only use 2-cliques and 3-cliques (edges and triangles) in a minimal covering.³

More recently, Conjecture 21 in [\[3\]](#page--1-0) formulated the problem in a slightly different way, in terms of the *maximal* cliques in G ; that is, those that are not proper subgraphs of any other clique. We provide here a proof of this conjecture, thus validating the several following remarks made in that paper. To be consistent with [\[3\],](#page--1-0) we use the notion of *basis*. A basis is a minimum size set of maximal cliques that covers all edges and all vertices of G .

Lemma 1. Suppose that a finite simple graph G with vertex set $V = \{1, 2, ..., n\}$ has a basis B of maximal cliques of cardinality σ_{\min} . Then there is a string **x** on a base alphabet of size σ_{\min} whose associated graph $\mathcal{G}_x = \mathcal{G}$. No string on a smaller alphabet has this *property.*

Proof. Let $B = \{C_1, C_2, ..., C_{\sigma}\}\$. Let $\{\lambda_s\}_{s=1}^{\sigma}$ be distinct letters. We construct a string **x** as follows. For each ordered pair (s, i) with $1 \le s \le \sigma$ and $1 \le i \le n$, assign λ_s to $\mathbf{x}[i]$ if vertex *i* occurs in the maximal clique C_s . It is clear from the definitions that the string **x** so constructed satisfies $\mathcal{G}_x = \mathcal{G}$.

Now consider any string **x** of length *n* for which $G_x = G$ and let τ be the number of distinct (ordinary) letters occurring in **x**. For each such letter λ, there is a clique C_λ of G whose vertices are those *i* for which $\lambda \in \mathbf{x}[i]$. Of course, these cliques may not be maximal, but each C_λ can be extended to a maximal clique C'_λ . Note that every vertex and edge of G occurs in one of the cliques C_λ and *a fortiori* in one of the maximal cliques C_λ' . However, the C_λ' might not all be distinct. Let *τ'* be the number of distinct C'_λ . Then $\tau \ge \tau' \ge \sigma$, the latter inequality following from the fact that there is a basis of cardinality σ_{\min} . This shows that τ cannot be less than σ_{\min} and completes the proof. \Box

It turns out that maximality is irrelevant in the specification of basis. Let $\phi'(G)$ be the cardinality of a basis (of maximal cliques) in G and let $\phi(G)$ be the cardinality of a smallest set of cliques that cover all edges and vertices of G. Then:

Observation 2. $\phi'(\mathcal{G}) = \phi(\mathcal{G})$ *.*

³ The authors thank an anonymous referee who drew their attention to the available material on intersection graphs and clique edge covers.

Please cite this article in press as: J. Helling et al., Constructing an indeterminate string from its associated graph, Theoret. Comput. Sci. (2017), http://dx.doi.org/10.1016/j.tcs.2017.02.016

Download English Version:

<https://daneshyari.com/en/article/6875674>

Download Persian Version:

<https://daneshyari.com/article/6875674>

[Daneshyari.com](https://daneshyari.com)