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In nearest larger value (NLV) problems, we are given an array A[1..n] of distinct numbers, 
and need to preprocess A to answer queries of the following form: given any index i ∈
[1, n], return a “nearest” index j such that A[ j] > A[i]. We consider the variant where the 
values in A are distinct, and we wish to return an index j such that A[ j] > A[i] and | j − i|
is minimized, the nondirectional NLV (NNLV) problem. We consider NNLV in the encoding
model, where the array A is deleted after preprocessing.
The NNLV encoding problem turns out to have an unexpectedly rich structure: the effective 
entropy (optimal space usage) of the problem depends crucially on details in the definition 
of the problem. Of particular interest is the tiebreaking rule: if there exist two nearest 
indices j1, j2 such that A[ j1] > A[i] and A[ j2] > A[i] and | j1 − i| = | j2 − i|, then which 
index should be returned? For the tiebreaking rule where the rightmost (i.e., largest) index 
is returned, we encode a path-compressed representation of the Cartesian tree that can 
answer all NNLV queries in 1.89997n + o(n) bits, and can answer queries in O (1) time. 
An alternative approach, based on forbidden patterns, achieves a very similar space bound 
for two tiebreaking rules (including the one where ties are broken to the right), and (for 
a more flexible tiebreaking rule) achieves 1.81211n + o(n) bits. Finally, we develop a fast 
method of counting distinguishable configurations for NNLV queries. Using this method, 
we prove a lower bound of 1.62309n − �(1) bits of space for NNLV encodings for the 
tiebreaking rule where the rightmost index is returned.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nearest Larger Value (NLV) problems have had a long and storied history. Given an array A[1..n] of values, the objective 
is to preprocess A to answer queries of the general form: given an index i, report the index or indices nearest to i that 
contain values strictly larger that A[i]. If no such index exists, then A[i] is the maximum element in A, and we return −1.

Berkman et al. [1] studied the parallel pre-processing for this problem and noted a number of applications, such as 
parenthesis matching and triangulating monotone polygons. The connection to string algorithms for both the data structur-
ing and the pre-processing variants of this problem is since well-established.

✩ A preliminary version appeared in the Proceedings of the 26th Annual Symposium on Combinatorial Pattern Matching (CPM 2015).
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Table 1
Number of distinguishable configurations of nearest larger value problems with various tiebreaking rules.

n 1 2 3 4 5 6 7 8 9 10 11 12

rule I 1 2 5 14 40 116 341 1010 3009 9012 27087 81658
rule II 1 2 5 14 42 126 383 1178 3640 11316 35263 110376
rule III 1 2 5 12 32 88 248 702 1998 5696 16304 46718

Since the definition of “nearest” is a bit ambiguous, we propose replacing it by one of the following options in order to 
fully specify the problem:

• Unidirectionally nearest: the solution is the index j ∈ [1, i −1] such that A[ j] > A[i] and i − j is minimized. This provides 
the nearest larger value to the left of the query index, and is equivalent (by symmetry) to the variant in which we ask 
for the nearest larger value to the right.

• Bidirectionally nearest: the solution consists of indices j1 ∈ [1, i − 1] and j2 ∈ [i + 1, n] such that A[ jk] > A[i] and |i − jk|
is minimized for k ∈ {1, 2}. Thus, in the bidirectional problem, we return both nearest larger values to the left and right.

• Nondirectionally nearest: the solution is the index j such that A[ j] > A[i] and |i − j| is minimized. As far as we are 
aware, this formulation has not been considered before.

Furthermore, the data structuring problem has different characteristics depending on whether we consider the elements of 
A to be distinct (Berkman et al. considered the undirectional variant when all elements in A are distinct).

We consider the problem in the encoding model, where once the data structure to answer queries has been created, the 
array A is deleted. Since it is not possible to reconstruct A from NLV queries on A, the effective entropy of NLV queries [2], 
the log (base 2) of the number of distinguishable NLV configurations, is very low and an NLV encoding of A can be much 
smaller than A itself. The encoding variant has several applications in space-efficient data structures for string processing, in 
situations where the values in A are intrinsically uninteresting. Results on encoding NLV problems include (all of the space 
bounds below are tight to within lower-order terms):

• The bidirectional NLV when A contains distinct values boils down essentially to encoding a Cartesian tree, through 
which route 2n + o(n)-bit and O (1)-time data structures exist [3,4].

• The unidirectional NLV when A contains non-distinct values can be encoded in 2n + o(n) bits and queries answered 
in O (1) time [5,6]. For the unidirectional NLV the bound is tight even when all values are distinct: we can perturb 
any instance of the unidirectional problem with non-distinct values in such a way as to preserve the solutions to all 
queries.1

• The bidirectional NLV for the case where elements in A need not be distinct was first studied by Fischer [7]. His data 
structure occupies lg(3 + 2

√
2)n + o(n) ≈ 2.544n + o(n) bits of space,2 and supports queries in O (1) time.

In this paper, we consider the nondirectionally nearest larger value (NNLV) problem, in the case that all elements in A
are distinct. The above results already hint at the combinatorial complexity of NLV problems. However, the NNLV problem 
appears to be even richer, and the space bound appears not only to depend upon whether the elements of A are all distinct 
or not, but also upon the specific tiebreaking rule to use if there are two equidistant nearest values to the query index i.

For instance, given a location i where there is a tie, we might always select the larger value to the right of location i to 
be its nearest larger value. We call this rule I. We give an illustration in the middle panel of Fig. 1 (on page 4). Alternative tie 
breaking rules might be: to select the smallest of the two larger values (rule II); to select the larger of the two larger values 
(rule III); or to select an arbitrary larger value (rule IV). Interestingly, it turns out that the tie breaking rule is important for 
the space bound. That is, if we count the number of distinguishable configurations of the NNLV problem for the various tie 
breaking rules, then we get significantly different answers. We counted the number of distinguishable configurations subject 
to rules I–III, for problem instances of size n ∈ [1, 12], and got the sequences presented in Table 1.

Unfortunately, none of the above sequences appears in the Online Encyclopedia of Integer Sequences.3 Consider the 
sequence generated by some arbitrary tie breaking rule. If zi is the i-th term in this sequence, then limn→∞ lg(zn)/n is 
the constant factor in the asymptotic space bound required to store all the answers to the NNLV problem subject to that 
tiebreaking rule.

1 More details: given any array with non-distinct elements for the unidirectional problem, we first reduce the values of the elements to their ranks 
(allowing ties). We then tweak the values so that the rightmost of each duplicated value x is x + ε for some ε ∈ (0, 1). We then reduce ε by some positive 
amount such that it is remains positive, and repeat this step until all elements are distinct.

2 We use lg x to denote log2x.
3 https :/ /oeis .org/.
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