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Existing compact routing schemes, e.g., Thorup and Zwick [4] and Chechik [6] often have 
no means to tolerate failures, once the system has been set up and started. This paper 
presents, to our knowledge, the first self-healing compact routing scheme. Besides, our 
schemes are developed for low memory nodes and are compact schemes, meaning they 
require only O (log2 n) bits memory.
We introduce two algorithms of independent interest: The first is CompactFT, a novel 
compact version of the self-healing algorithm Forgiving Tree of Hayes et al. [7] that uses 
only O (log n) bits local memory. The second algorithm (CompactFTZ) combines CompactFT 
with Thorup–Zwick’s tree-based compact routing scheme [4] to produce a compact self-
healing routing scheme. In the self-healing model, the adversary deletes nodes one at 
a time and the affected nodes self-heal locally by adding few edges. We introduce the 
bounded-memory self-healing model, where the memory each node need to use for the self-
healing algorithm is bounded. CompactFT recovers from each attack in only O (1) time and 
� messages, with only +3 degree increase and O (log�) graph diameter increase, over any 
sequence of deletions (� is the initial maximum degree).
Additionally, CompactFTZ guarantees delivery of a packet sent from sender s as long as the 
receiver t has not been deleted, with only an additional O (y log �) latency, where y is 
the number of nodes that have been deleted on the path between s and t. If t has been 
deleted, s gets informed and the packet is removed from the network. CompactFTZ uses 
only O (logn) bits memory for local fields (such as routing tables) and O (log2 n) bits for 
the routing labels, thus requiring O (log2 n) bits overall.
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1. Introduction

Routing protocols have been the focus of intensive research over the years. Efficient and robust routing is critical in 
current networks, and will be even more so in future networks. Routing is based on information carried by the travelling
packets and data structures that are maintained at intermediate nodes. The efficiency parameters change from time to time, 
as the network use develops and new bottlenecks are identified. It is clear that the size of the network makes the use of 
centralised decisions very difficult, and we are close to giving up on maintaining long distance routing decisions. We are a 
few years before a full-scale deployment of the Internet of Things (IOT), which will introduce billions of very weak devices 
that need to have routing capabilities. The size of the network and the dynamic structure that will evolve will force focusing 
on local decisions, pushing for the use of protocols that do not require maintaining huge routing tables.

Santoro and Khatib [1], Peleg and Upfal [2], and Cowen [3] pioneered the concept of compact routing that requires only 
a minimal storage at each node. Moreover, the use of such routing protocols imposes only a constant factor increase in 
the length of the routing. Several papers followed up with some improvements on the schemes (cf. Thorup and Zwick [4], 
Fraigniaud and Gavoille [5], and Chechik [6]). These efficient routing schemes remain stable as long as there are no changes 
to the network.

The scale and mobility of future networks such as IOT will necessarily lead to continuous changes to the network and 
regular (possibly isolated) failures of components/devices. Thus, maintaining connectivity and ensuring a smooth running of 
already running protocols will be important. This is where the self-healing capabilities of the network will be important for 
efficient, responsive repair of the network without hindering regular operation.

The target of the current paper is to introduce an efficient compact scheme that combines small local memory and packet 
headers with the ability to update the local data structures stored at each node in a response to a change of the network. 
Throughout this paper, when we say compact, we imply schemes that use o(n) local memory per node and packet headers 
of size o(n), where n is the number of nodes in the network. Our new scheme has similar cost as previous compact routing 
schemes. In this work, we will focus on node failures. In general, node failures may be considered more challenging to 
handle than edge/link failures, and are analysed less often.

Our algorithms work in the bounded memory self-healing model (Section 2). We assume that the network is initially a 
connected graph over n nodes. All nodes are involved in a preprocessing stage in which the nodes identify edges to be 
included in building a spanning tree over the network and construct their local data structures. After the preprocessing 
is complete, the adversary repeatedly attacks the network. The adversary knows the network topology and the algorithms 
and has the ability to delete arbitrary nodes from the network. To enforce a bound on the rate of changes, it is assumed 
the adversary is constrained in that it deletes one node at a time, and between two consecutive deletions, nodes in the 
neighbourhood of the deleted node can exchange messages with their immediate neighbours and can also request for 
additional edges to be added between themselves. The adversary can attack only after the system has self-healed itself from 
the previous attack. Thus, the self-healing process should be efficient enough so that the system recovers quickly after any 
possible attack.

Our self-healing algorithm CompactFT ensures recovery from each attack in only a constant time and � messages, 
while, over any sequence of deletions, taking only a constant additive degree increase (of 3) and keeping the diameter as 
O (D log �), where D is the diameter of the initial graph and � is the maximum degree of the initial spanning tree built on 
the graph. Moreover, CompactFT needs only O (log n) local memory. Theorem 4.1 states the results formally.

CompactFTZ, our compact routing algorithm, is based on the compact routing scheme on trees by Thorup and Zwick [4], 
and ensures routing between any pair of existing nodes in our self-healing tree without loss of any message packet whose 
target is still connected. Moreover, the source will be informed if the receiver is lost, and if both the sender and receiver 
have been lost, the message will be discarded from the system within at most twice of the routing time. Our algorithm 
guarantees that after any sequence of deletions, a packet from s to t is routed through a path of length O (d(s, t) log�)

where d(s, t) is the distance between s and t and � is the maximum degree of any node, in the initial tree. Though 
CompactFTZ uses only O (log n) local memory, the routing labels (and, hence, the messages) are of O (log2 n) size, so nodes 
may need O (log2 n) memory to locally process the messages. Theorem 6.2 states the results formally.

In CompactFTZ, we use a slight variant of Thorup and Zwick. This variant is for no particular reason but to exemplify that 
our construction to obtain CompactFTZ is not tailor-made for a particular routing protocol but for any direct compact routing 
protocol for trees based on a DFS labelling (as Thorup and Zwick is). A routing protocol is direct if the header of a packet 
is not modified during the routing. Instead of using a concrete protocol, we could have considered an abstract compact 
routing protocol for trees and derive our construction, however, we use a concrete example to make the exposition concise. 
The same approach applies to the compact routing algorithm for trees of Fraigniaud and Gavoille [5], or any DFS-based 
interval routing for trees (see for example [1]), although the latter does not necessarily achieve compactness.

1.1. Related work

CompactFT uses ideas from the Forgiving Tree [7] (FT, in short) in order to improve compact routing. The main improve-
ment of CompactFT is that no node uses more than O (log n) local memory and thus, CompactFT is compact. CompactFT
achieves the same bounds and healing invariants as FT, however, taking slightly more messages (at most O (�) messages as 
opposed to O (1) in FT) in certain rounds. Table 1 compares between the algorithms.
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