
Theoretical Computer Science 709 (2018) 80–97

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Randomized k-set agreement
in crash-prone and Byzantine asynchronous systems ✩

Achour Mostéfaoui a, Hamouma Moumen b, Michel Raynal c,d,∗
a LINA, Université de Nantes, 44322 Nantes, France
b University of Batna, Algeria
c Institut Universitaire de France, France
d IRISA, Université de Rennes, 35042 Rennes, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 April 2016
Received in revised form 17 March 2017
Accepted 23 March 2017
Available online 25 March 2017

Keywords:
Asynchronous system
Broadcast abstraction
Byzantine process
Coin
Crash failure
Distributed algorithm
k-Set agreement
Message-passing system
Randomized algorithm
Signature-free algorithm

k-Set agreement is a central problem of fault-tolerant distributed computing. Consider-
ing a set of n processes, where up to t may commit failures, let us assume that each 
process proposes a value. The problem consists in defining an algorithm such that each 
non-faulty process decides a value, at most k different values are decided, and the decided 
values satisfy some context-depending validity condition. Algorithms solving k-set agree-
ment in synchronous message-passing systems have been proposed for different failure 
models (mainly process crashes, and process Byzantine failures). Differently, k-set agree-
ment cannot be solved in failure-prone asynchronous message-passing systems when t ≥ k. 
To circumvent this impossibility an asynchronous system must be enriched with additional 
computational power.
Assuming t ≥ k, this paper presents two distributed algorithms that solve k-set agreement 
in asynchronous message-passing systems where up to t processes may commit crash fail-
ures (first algorithm) or more severe Byzantine failures (second algorithm). To circumvent 
k-set agreement impossibility, this article considers that the underlying system is enriched 
with the computability power provided by randomization. Interestingly, the algorithm that 
copes with Byzantine failures is signature-free, and ensures that no value proposed only by 
Byzantine processes can be decided by a non-faulty process. Both algorithms share basic 
design principles.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Distributed agreement in the presence of process failures. The world is distributed and more and more applications are 
now distributed. Moreover, when considering the core of non-trivial distributed applications, it appears that the computing 
entities (processes) have to agree in one way or another, for example to take a common decision, execute specific actions, 
or validate some commitment. Said another way, agreement problems lie at the core of distributed computing.

The most famous distributed agreement problem is the consensus problem. Let us consider a set of processes, where 
some of them may commit failures. Assuming each process proposes a value, the consensus problem is defined by the 

✩ Parts of the work presented in this paper appeared in the ACM conferences SPAA 2001 and ICDCN 2016 [24,27].

* Corresponding author.
E-mail address: raynal@irisa.fr (M. Raynal).

http://dx.doi.org/10.1016/j.tcs.2017.03.018
0304-3975/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2017.03.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:raynal@irisa.fr
http://dx.doi.org/10.1016/j.tcs.2017.03.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.03.018&domain=pdf


A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97 81

following properties: each non-faulty process must decide a value (termination), such that the same value is decided by the 
non-faulty processes (agreement), and this value satisfies some validity condition, which depends on the proposed values 
and the considered failure model [13,29].

The k-set agreement problem is a natural weakening of consensus [10]. It allows the non-faulty processes to decide 
different values, as long as no more than k values are decided (the problem parameter k can be seen as the coordination 
degree imposed to processes). Hence, consensus is 1-set agreement. Let us notice that k-set agreement can be easily solved 
in crash-prone systems where k (the maximal number of different values that can be decided) is greater than t (the maximal 
number of processes that may be faulty). The k-set agreement problem has applications, e.g., to compute a common subset 
of wavelengths (each process proposes a wavelength and at most k of them are selected), or to duplicate k state machines 
where at most one is required to progress forever [16,35].

Crash and Byzantine failures. A process crash failure occurs when a process stops prematurely. After it crashed, a process 
never recovers; moreover it behaves correctly (i.e., according to its code) before crashing. A crash failure can be seen as a 
benign failure, as a crashed process did not pollute the computation before crashing (e.g., by disseminating fake values).

The situation is different with Byzantine failures. This failure type has been introduced in the context of synchronous 
distributed systems [21,29,33], and then investigated in the context of asynchronous distributed systems [2,22,34]. A process 
has a Byzantine behavior when it arbitrarily deviates from its intended behavior. We then say that it “commits a Byzantine 
failure” (otherwise we say the process is non-faulty or correct). This bad behavior can be intentional (malicious) or simply 
the result of a transient fault that altered the local state of a process, thereby modifying its behavior in an unpredictable 
way. Let us notice that, from a failure hierarchy point of view, process crashes (unexpected halting) constitute a strict 
subset of Byzantine failures. As asynchronous message-passing systems are more and more pervasive, the assumption “no 
process has a bad behavior” is no longer sensible. Hence, agreement in asynchronous Byzantine message-passing systems is 
becoming a more and more important issue of fault-tolerance.

An impossibility result and how to cope with it. Let us consider a system made up of n processes, where up to t may be 
faulty. Whatever the value of k (with respect to t), k-set agreement can always be solved if the system is synchronous [33]. 
The situation is different in asynchronous systems where k-set agreement is impossible to solve in the process crash failure 
model when k ≤ t [5,19,37]. As Byzantine failures are more severe than crash failures, this impossibility remains true in 
asynchronous Byzantine systems.

It follows from this impossibility that, when k ≤ t , either the space of values that can be proposed must be restricted [14,
25], or the underlying asynchronous distributed system must be enriched with additional computational power for k-set 
agreement to be solved. Such an additional computational power can be provided with partial synchrony assumptions 
(e.g., [11,39] which consider k = 1), minimal synchrony assumptions (e.g., [6] which considers k = 1 and Byzantine failures), 
appropriate failure detectors (e.g., [9,26] which consider k = 1 and crash failures, and [15] which considers k = 1 and 
Byzantine failures), or randomization (e.g., [3] which considers k = 1 and crash failures, [31] which considers k = 1 and 
Byzantine failures, [8] which considers k ≤ t and crash failures in read/write shared memory systems, and [27] which 
considers k ≤ t and crash failures in message-passing systems).

Intrusion-tolerant agreement with respect to Byzantine processes. The validity property associated with a distributed 
agreement problem relates its outputs to its inputs. As no process creates fake values in a crash-prone system, the k-set 
agreement validity property is easy to state, namely, a decided value must be a value proposed by a process. In a system 
where processes may commit Byzantine failures, there is no way to direct a Byzantine process to decide some specific value. 
Consequently the k-set agreement validity property can only be on the values decided by the correct processes. Moreover, 
the notion of a “value proposed by a faulty process” is dubious.

A classical validity property for Byzantine consensus (see, e.g., [22]) states that, if all the non-faulty processes propose 
the same value, they must decide it. Hence, as soon as two non-faulty processes propose different values, any value can 
be decided by the correct processes, even a value “proposed” by a Byzantine process. (Let us observe that a Byzantine 
process can appear as proposing different values to different correct processes.) More generally, and as noticed and deeply 
investigated in [30], it follows that the solvability of Byzantine k-set agreement is sensitive to the particular validity property 
that is considered.

This paper considers the following validity property (introduced in [28] where it is called intrusion-tolerance): no value 
proposed only by Byzantine processes can be decided by a non-faulty process. One way to be able to design a k-set al-
gorithm providing this property, consists in allowing a non-faulty process to decide a default value ⊥, except (to prevent 
triviality) when the non-faulty processes propose the same value. (The ⊥ decision at some non-faulty processes can occur 
for example in the adversary scenario where the non-faulty processes propose different values, while the Byzantine pro-
cesses propose the same value.) Another way to design a k-set algorithm providing intrusion-tolerance consists in adding 
a constraint on the total number of different values that can be proposed by the non-faulty processes. Let m ≥ 2 be this 
number. It is shown in [18] that, in an n-process system where up to t processes may commit Byzantine failures, such a 
constraint is n − t > mt (i.e., there is a value proposed by at least (t + 1) non-faulty processes).

Content of the paper. This paper is on k-set agreement in n-process asynchronous message-passing systems, where k ≤ t . It 
presents two algorithms. The first is a k-set agreement algorithm for asynchronous message-passing systems where up to 



Download English Version:

https://daneshyari.com/en/article/6875697

Download Persian Version:

https://daneshyari.com/article/6875697

Daneshyari.com

https://daneshyari.com/en/article/6875697
https://daneshyari.com/article/6875697
https://daneshyari.com

