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An arithmetic read-once formula (ROF) is a formula (circuit of fan-out 1) over +, × where 
each variable labels at most one leaf. Every multilinear polynomial can be expressed as the 
sum of (possibly exponentially many) ROFs. In this work, we prove, for certain multilinear 
polynomials, a tight lower bound on the number of summands in such an expression.
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1. Introduction

Read-once formulas (ROF) are formulas (circuits of fan-out 1) in which each variable appears at most once. A formula 
computing a polynomial that depends on all its variables must read each variable at least once. Therefore, ROFs compute 
some of the simplest possible functions that depend on all of their variables. The polynomials computed by such formulas 
are known as read-once polynomials (ROPs). Since every variable is read at most once, ROPs are multilinear. (A polynomial 
is said to be multilinear if the individual degree of each variable is at most one.) But not every multilinear polynomial is a 
ROP. For example, x1x2 + x2x3 + x1x3.

We investigate the following question: Given an n-variate multilinear polynomial, can it be expressed as a sum of at 
most k ROPs? It is easy to see that every bivariate multilinear polynomial is a ROP. Any tri-variate multilinear polynomial 
can be expressed as a sum of 2 ROPs. With a little thought, we can obtain a sum-of-3-ROPs expression for any 4-variate 
multilinear polynomial. An easy induction on n then shows that any n-variate multilinear polynomial, for n ≥ 4, can be 
written as a sum of at most 3 × 2n−4 ROPs; see Proposition 5. Also, the sum of two multilinear monomials is a ROP, so 
any n-variate multilinear polynomial with M monomials can be written as the sum of �M/2� ROPs. We ask the following 
question: Does there exist a strict hierarchy among k-sums of ROPs? Formally,

Problem 1. Consider the family of n-variate multilinear polynomials. For 1 < k ≤ 3 × 2n−4, is 
∑k ·ROP strictly more powerful 

than 
∑k−1 ·ROP? If so, what explicit polynomials witness the separations?

✩ Preliminary versions of this paper appear in the Proceedings of the 11th Computer Science Symposium in Russia CSR, LNCS Vol. 9691 pp. 266–279 and 
as Technical Reports on ECCC and CoRR [12].
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We answer this affirmatively for k ≤ �n/2�. In particular, for k = �n/2�, there exists an explicit n-variate multilinear 
polynomial which cannot be written as a sum of less than k ROPs but it admits a sum-of-k-ROPs representation.

Note that n-variate ROPs are computed by linear sized formulas. Thus if an n-variate polynomial p is in 
∑k ·ROP, then 

p is computed by a formula of size O (kn) where every intermediate node computes a multilinear polynomial. Since super-
polynomial lower bounds are already known for the model of multilinear formulas [14], we know that for those polynomials 
(including the determinant and the permanent), a 

∑k ·ROP expression must have k at least quasi-polynomial in n. However 
the best upper bound on k for these polynomials is only exponential in n, leaving a big gap between the lower and upper 
bound on k. A lesser but still significant gap also exists in the known exponential lower bound for sums of ROPs; in [13] it 
is shown that a certain polynomial, explicitly described by Raz and Yehudayoff in [15], requires 2�(n1/3/ log n) ROP summands, 
while 2n summands is anyway sufficient. On the other hand, our lower bound is provably tight.

A counting argument (see Proposition 7) shows that a random multilinear polynomial requires exponentially many ROPs; 
there are multilinear polynomials requiring k = �(2n/n2). Our general upper bound on k is O (2n), leaving a gap between 
the lower and upper bound. One challenge is to close this gap.

A natural question to ask is whether stronger lower bounds than the above result can be proven. In particular, to separate ∑k−1 ·ROP from 
∑k ·ROP, how many variables are needed? Our hierarchy result says that 2k − 1 variables suffice, but there 

may be simpler polynomials (with fewer variables) witnessing this separation. We demonstrate another technique which 
improves upon the previous result for k = 3, showing that 4 variables suffice. In particular, we show that over the field of 
reals, there exists an explicit multilinear 4-variate multilinear polynomial which cannot be written as a sum of 2 ROPs. This 
lower bound is again tight, as there is a sum of 3 ROPs representation for every 4-variate multilinear polynomial.

1.1. Our results and techniques

We now formally state our main results.
The first main result establishes the strict hierarchy among k-sums of ROPs.

Theorem 1. For each n ≥ 1, the n-variate degree n − 1 symmetric polynomial Sn−1
n cannot be written as a sum of less than �n/2�

ROPs, but it can be written as a sum of �n/2� ROPs.

The idea behind the lower bound is that if g = Sn−1
n can be expressed as a sum of less than �n/2� ROFs, then one of the 

ROFs can be eliminated by taking partial derivative with respect to one variable and substituting another by a field constant. 
We then use the inductive hypothesis to arrive at a contradiction. This approach necessitates a stronger hypothesis than the 
statement of the theorem, and we prove this stronger statement in Lemma 18 as part of Theorem 21.

This result separates 
∑3 ·ROP from 

∑2 ·ROP via the polynomials S4
5 and S5

6. Our second main result shows that 
∑3 ·ROP

is also separated from 
∑2 ·ROP by a 4-variate multilinear polynomial.

Theorem 2. There is an explicit 4-variate multilinear polynomial f which cannot be written as the sum of 2 ROPs over R.

The proof of this theorem mainly relies on a structural lemma (Lemma 25) for sum of 2 read-once formulas. In particular, 
we show that if f can be written as a sum of 2 ROPs then one of the following must be true:

1. Some 2-variate restriction is a linear polynomial.
2. There exist variables xi, x j ∈ Var( f ) such that the polynomials xi , x j , ∂xi ( f ), ∂x j ( f ), 1 are linearly dependent.
3. We can represent f as f = l1 · l2 + l3 · l4 where (l1, l2) and (l3, l4) are variable-disjoint linear forms.

Checking the first two conditions is easy. For the third condition we use the commutator of f , introduced in [16], to find 
one of the li ’s. The knowledge of one of the li ’s suffices to determine all the linear forms. Finally, we construct a 4-variate 
polynomial which does not satisfy any of the above mentioned conditions. This construction does not work over algebraically 
closed fields. We do not yet know how to construct an explicit 4-variate multilinear polynomial not expressible as the sum 
of 2 ROPs over such fields, or even whether such polynomials exist.

1.2. Related work

Despite their simplicity, ROFs have received a lot of attention both in the arithmetic as well as in the Boolean world 
[8,5,3,4,16,17]. The most fundamental question that can be asked about polynomials is the polynomial identity testing (PIT) 
problem: Given an arithmetic circuit C , is the polynomial computed by C identically zero or not. PIT has a randomized 
polynomial time algorithm: Evaluate the polynomial at random points. It is not known whether PIT has a deterministic 
polynomial time algorithm. In 2004, Kabanets and Impagliazzo established a connection between PIT algorithms and proving 
general circuit lower bounds [10]. Similar results are known for some restricted classes of arithmetic circuits, for instance, 
constant-depth circuits [6,1]. However, consider the case of multilinear formulas. Even though strong lower bounds are 
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