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We identify a transfer method from bounded existentially quantified Diophantine equations 
to formulas of Tarski algebra, the first order theory of the real field. The method is applied 
to show that NP is contained in 

⋃∞
n=1 Dtime(2a·logO (1)n

), where a depends only on the given 
Diophantine equation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We follow standard definitions for the complexity class NP, e.g., [3]. Note also that O -notation always indicates an 
absolute constant.

An existential Diophantine equation (EDE) A has the form

∃x1, . . . , xk P (x1, . . . , xk) = 0 ,

where P (x1, . . . , xk) is an integer coefficient polynomial and all variables range over N. It is known that the decision problem 
for EDE is not computable [7]. An n-EDE is an EDE whose coefficient absolute values and variables are restricted to [0..n]. 
We introduce a transfer method that converts an n-EDE A into a sentence B of Tarski algebra such that the following 
theorem holds.

Theorem 1. A ⇔ B and B can be decided in time

2O (a·logO (1)n) ,

where a is the total degree of P (x1, . . . , xk).

The proof uses the main complexity bound for deciding Tarski algebra sentences and details of the transfer method. We 
use Theorem 1 to prove
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Theorem 2. NP is contained in 
⋃∞

n=1 Dtime(2a·logO (1)n
).

The proof of Theorem 2 requires an additional fact. Let 〈x〉 denote the binary representation of x ∈ N. We refer to the 
set of triples (〈a〉, 〈b〉, 〈c〉) such that there exists x ∈ N for which x2 ≡ a (mod b) and x < c as SBQR (size-bounded quadratic 
residues problem). We can W.L.O.G. impose a, c < b and measure the size of a triple in terms of 	log b
 = |〈b〉|. We see that 
SBQR is a 3-adic relation over N. SBQR is NP complete [6]. It is easy to check that

∃x, y1, y2 (x2 − a − b · y1)
2 + (c − x − y2)

2 = 0 (1)

is an EDE representation of SBQR.

2. Tarski algebra

The transfer method is based on the complexity of quantifier elimination for Tarski algebra, which is the first order theory 
of the real field. Only elementary facts about the theory will be needed apart from the quantifier elimination result. The 
language of the theory is standard first order logic with equality and the nonlogical symbols +, ×, 0, 1 where + and × are 
2-adic function symbols and 0 and 1 are 0-adic function symbols. The interpretation assigns real number values to variables 
and the function symbols have the obvious definitions. We will write + and × as infix symbols. A term can be regarded 
as a polynomial with integer coefficients. We leave it to the reader to verify that subtraction is definable and that numerals 
for elements of N can be expressed as terms built up in a variant of binary representation using the abbreviation 2 = 1 + 1. 
Using trichotomy of the real field we can eliminate negation so that an atomic formula can be written as P (u1, . . . , ur) � 0, 
where � ∈ {=, <, >}. A general prenex formula A(x1, . . . , xk) (free variables are displayed) has the form

Q 1 y1, . . . , Q s ys B(A1, . . . , Am) ,

where each Q i is either ∀ or ∃ and each Ai is an atomic formula in the variables x1, . . . , xk and y1, . . . , ys and B(z1, . . . , zm)

is a Boolean expression without negation in the Boolean variables z1, . . . , zm . A formula without free variables is called a 
sentence. We say the formulas A(x1, . . . , xk) and B(x1, . . . , xk) are equivalent if ∀x1, . . . , xk A(x1, . . . , xk) ⇔ B(x1, . . . , xk) is a 
theorem of Tarski algebra. Under the interpretation two formulas are equivalent ⇔ they have the same extension over the 
real field. For sentences this reduces to the same truth value.

From this point formula will mean a Tarski algebra prenex formula. The size |A| of a formula is just the sum of the sizes 
of its atomic formulas and the size of an atomic formula is the sum of the sizes of its coefficients in binary. See [1] for a 
very detailed account of the decision procedure complexity of Tarski algebra. Tarski proposed that the first order theory of 
the real field (generalized to real closed fields) is decidable in [9]. He produced a fully worked out quantifier elimination 
algorithm in [10]. It is interesting to note that Herbrand [11] (note on p. 581) anticipated Tarski’s conjecture. Considerable 
improvements in the complexity of quantifier elimination for Tarski algebra have followed the original algorithm but the 
most substantial complexity reduction is due to Grigoriev [4]. The current result (see chapter 14, p. 518 of [1]) can be 
summarized as

Theorem 3. an equivalent quantifier-free formula for a formula an be computed in time

aO (bO (c+1))

,

where a is the size of the formula, b is the number (free and bound) of variables and c is the number of quantifier alternations.

3. The transfer method

3.1. Preliminaries

Recall that an EDE has the form

∃x1, . . . , xk P (x1, . . . , xk) = 0 .

Some notation is needed. The binary logarithm is written as log and [x..y] is the set of integers between x and y inclusive 
with x < y. Over N define x = y mod z to be the least x such that x ≡ y (mod z). Let [d1, . . . , dk]P (x1, . . . , xk) be the 
coefficient of xd1

1 · · · xdk
k . The size, |P (x1, . . . , xk)|, of the polynomial P (x1, . . . , xk) is just

∑

i1,...,ik

	log |[i1, . . . , ik]P (x1, . . . , xk)|
 . (2)

Summation is only over nonzero coefficients. From Eq. (2) we have

|P (x1, . . . , xk)| ≤ d∗ · max	log |[i1, . . . , ik]P (x1, . . . , xk)|
 , (3)
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