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We show that a sequence has effective Hausdorff dimension 1 if and only if it is 
coarsely similar to a Martin-Löf random sequence. More generally, a sequence has effective 
dimension s if and only if it is coarsely similar to a weakly s-random sequence. Further, 
for any s < t, every sequence of effective dimension s can be changed on density at most 
H−1(t) − H−1(s) of its bits to produce a sequence of effective dimension t, and this bound 
is optimal.

© 2017 Elsevier B.V. All rights reserved.

The theory of algorithmic randomness defines an individual object in a probability space to be random if it looks plausible 
as an output of a corresponding random process. The first and the most studied definition was given by Martin-Löf [16]: 
a random object is an object that satisfies all “effective” probability laws, i.e., does not belong to any effectively null set. 
(See [4,23,22] for details; we consider only the case of uniform Bernoulli measure on binary sequences, which corresponds 
to independent tossings of a fair coin.) It was shown by Schnorr and Levin (see [20,21,12]) that an equivalent definition can 
be given in terms of description complexity: a bit sequence X ∈ 2ω is Martin-Löf (ML) random if and only if the prefix-free 
complexity of its n-bit prefix X �n is at least n − O (1). (See [14,23,22] for the definition of prefix-free complexity and for 
the proof of this equivalence; one may use also monotone or a priori complexity.) This robust class also has an equivalent 
characterization based on martingales that goes back to Schnorr [19].

The notion of randomness is in another way quite fragile: if we take a random sequence and change to zero, say, its 10th, 
100th, 1000th, etc. bits, the resulting sequence is not random, and for a good reason: a cheater that cheats once in a while 
is still a cheater. To consider such sequences as “approximately random”, one option is to relax the Levin–Schnorr definition 
by replacing the O (1) term in the complexity characterisation of randomness by a bigger o(n) term, thus requiring that 
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limn→∞ K (X �n)/n = 1. Such sequences coincide with the sequences of effective Hausdorff dimension 1. (Effective Hausdorff 
dimension was first explicitly introduced by Lutz [13]. It can be defined in several equivalent ways via complexity, via 
natural generalizations of effective null sets, and via natural generalizations of martingales; again, see [4,23,22] for more 
information.)

Another approach follows the above example more closely: we could say that a sequence is approximately random if it 
differs from a random sequence on a set of density 0. Our starting point is that this also characterizes the sequences of 
effective Hausdorff dimension 1.

To set notation, for n � 1, we let d be the normalised Hamming distance on {0,1}n , the set of binary strings of length n:

d(σ , τ ) = # {k : σ(k) �= τ (k)}
n

;
and we also denote by d the Besicovitch distance on Cantor space 2ω (the space of infinite binary sequences), defined by

d(X, Y ) = lim sup
n→∞

d(X �n, Y �n),

where Z �n stands for the n-bit prefix of Z . If d(X, Y ) = 0, then we say that X and Y are coarsely equivalent.1

Theorem 1.7. A sequence has effective Hausdorff dimension 1 if and only if it is coarsely equivalent to a ML-random sequence.

In Section 2, we generalize this result to sequences of effective dimension s in various ways. Because a sequence X
having effective dimension s implies that the prefix-free complexity of its n-bit prefix X �n is at least sn − o(n), it is natural 
to consider the weakly s-randoms, those sequences X such that K (X �n) � sn − O (1).

Theorem 2.5. Every sequence of effective Hausdorff dimension s is coarsely equivalent to a weakly s-random.

Along the way to proving this, we pass through the question of how to raise the effective dimension of a given sequence 
while keeping density of changes at a minimum. If d(X, Y ) = 0, then dim(X) = dim(Y ); so sequences of effective Hausdorff 
dimension s < 1 cannot be coarsely equivalent to a ML random sequence. It is natural then to ask, what is the minimal 
distance required between any sequence and a random? By Theorem 2.5, it is equivalent to ask about distances between 
sequences of dimension s and dimension 1; and naturally generalising, to ask, for any 0 � s < t � 1, about distances between 
sequences of dimension s and dimension t . We start with a naive bound. For any X, Y ∈ 2ω ,

|dim(Y ) − dim(X)| � H(d(X, Y )).

This is our Proposition 3.1. Here H(p) = −(p log p + (1 − p) log(1 − p)) is the binary entropy function defined on [0, 1]. The 
binary entropy function is used to measure the size of Hamming balls. If V (n, r) = ∑

k�nr

(n
k

)
is the size of a Hamming ball 

of radius r < 1/2 in 2n , then

H(r)n − O (log n) � log(V (n, r)) � H(r)n

(see [18, Cor. 9, p. 310]).
In Proposition 3.5, we will see that this bound is tight, in the sense that if s < t then there are X, Y ∈ 2ω with dim(X) = s, 

dim(Y ) = t and d(X, Y ) = H−1(t − s). Note that for H−1 we take the branch which maps [0, 1] to [0, 1/2].
Bounding the distance from an arbitrary dimension s sequence to the nearest dimension t sequence requires more 

delicate analysis. For example, fix 0 < s < t � 1. If X is Bernoulli H−1(s)-random, then its dimension is s. But its density 
of 1s is H−1(s). If dim(Y ) � t then the density of 1s in Y is at least H−1(t), so d(X, Y ) � H−1(t) − H−1(s). Note that 
H−1(t) − H−1(s) � H−1(t − s), so this is a sharper bound, and it is tight:

Theorem 4.1. For every sequence X with dim(X) = s, and every t ∈ (s, 1], there is a Y with dim(Y ) = t and d(X, Y ) � H−1(t) −
H−1(s).

In particular, for t = 1, in light of Theorem 1.7, we obtain

Theorem 2.1. For every X ∈ 2ω there is a ML-random sequence Y such that

d(X, Y ) � 1/2 − H−1(dim(X)).

(We however prove Theorem 2.1 first, and elaborate on its proof to obtain Theorem 2.5 and then Theorem 4.1.)

We can also ask, starting from an arbitrary random, how close is the nearest sequence of dimension s guaranteed to be? 
For example, a typical construction of a sequence of effective dimension 1/2 starts with a random and replaces all the even 

1 One place this is defined is in [11], where it is called “generic similarity”.
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