[Theoretical Computer Science](http://dx.doi.org/10.1016/j.tcs.2017.09.010) ••• (••••) •••-•••

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Theoretical Computer Science

www.elsevier.com/locate/tcs

Computing generalized de Bruijn sequences

F. Blanchet-Sadri ^a*,*∗, Sinziana Munteanu ^b

^a *Department of Computer Science, University of North Carolina, P.O. Box 26170, Greensboro, NC 27402–6170, USA* ^b *Department of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213–3891, USA*

A R T I C L E I N F O A B S T R A C T

Article history: Received 12 April 2016 Received in revised form 24 August 2017 Accepted 11 September 2017 Available online xxxx Communicated by D. Perrin

Keywords: Algorithms on words Combinatorics on words Graph theory Partial words Subwords Representable sets

De Bruijn sequences of order *n represent* the set *Aⁿ* of all words of length *n* over a given alphabet *A* in the sense that they contain occurrences of each of these words (they actually contain exactly one occurrence of each of these words). Recently, the computational problem of representing subsets of *Aⁿ* by *partial words*, which are sequences that may have holes or don't-care symbols that match each letter of *A*, was considered and shown to be in \mathcal{NP} . However, membership in $\mathcal P$ remained open. In this paper, we show that deciding if a subset *S* of *Aⁿ* is representable by a partial word can be done in polynomial time with respect to the size $n|S|$ of the input. We also describe a polynomial-time algorithm that determines all integers *h* for representation by partial words with exactly *h* holes. Moreover, our algorithms construct representation words. Our approach is graph theoretical.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A de Bruijn sequence of order *n* is a cyclic sequence over an alphabet *A* where each of the words of length *n* over *A* occurs as a subword exactly once $[8,9]$ (the sequences studied in this paper are not cyclic). The de Bruijn sequences can be efficiently constructed by taking an Eulerian cycle of a de Bruijn graph where every word of length *n* − 1 corresponds to a vertex and every word of length *n* corresponds to an edge (for alternative constructions see, e.g., [\[11,18\]\)](#page--1-0). De Bruijn sequences are useful and appear in a variety of contexts, e.g., combinatorics on words [\[1\],](#page--1-0) modern public-key cryptographic schemes, pseudo-random number generation [\[23\],](#page--1-0) digital fault testing, position sensing schemes [\[22\],](#page--1-0) non-linear shift registers [\[10\],](#page--1-0) coding [\[17\],](#page--1-0) data compression, etc. A vast literature on the de Bruijn sequences exists and generalizations have been explored (e.g., [\[6,7,12,14–16,19,24\]\)](#page--1-0).

Algorithmic combinatorics on *partial words* has been developing in the past several years (e.g., [\[2\]\)](#page--1-0). Partial words over an alphabet *A* are sequences from $A_{\diamond} = A \cup \{ \diamond \}$, where $\diamond \notin A$ is the hole symbol which matches every letter in *A* (*total words* are sequences without holes). If *w* is a partial word over *A*, then a *factor* of *w* is a block of consecutive symbols of *w* and a *subword* of *w* is a total word over *A* that can be obtained by replacing the holes in a factor of *w* by symbols from the alphabet. For instance, if we consider the partial word $01 \diamond 1000$ with one hole over $\{0, 1\}$, the total words 101, 111 are the subwords corresponding to the factor 1 \circ 1. For any partial word *w* and integer *n* \geq 0, denote by sub_{*w*}(*n*) the set of subwords of *w* of length *n*.

Let *S* be a set of total words of length *n* and let *h* ≥ 0 be an integer. A partial word *w* (respectively, partial word *w* with h holes) such that $sub_w(n) = S$ is a representation word (respectively, h-representation word) for S. The set S is representable

* Corresponding author. *E-mail addresses:* blanchet@uncg.edu (F. Blanchet-Sadri), smuntean@cs.cmu.edu (S. Munteanu).

<http://dx.doi.org/10.1016/j.tcs.2017.09.010> 0304-3975/© 2017 Elsevier B.V. All rights reserved.

Please cite this article in press as: F. Blanchet-Sadri, S. Munteanu, Computing generalized de Bruijn sequences, Theoret. Comput. Sci. (2017), http://dx.doi.org/10.1016/j.tcs.2017.09.010

2 *F. Blanchet-Sadri, S. Munteanu / Theoretical Computer Science* ••• *(*••••*)* •••*–*•••

(respectively, *h*-*representable*) if there exists a representation word (respectively, *h*-representation word) for *S*. If we consider $S = \{000, 001, 010, 100, 101\}$, then *S* can be 0-represented by $w = 00010100$, 1-represented by \diamond 00101, and 2-represented by $0\le0\le$. As we allow more holes, the representation word shrinks.

Let Rep be the problem of deciding whether *S* is representable and *h*-Rep be the problem of deciding whether *S* is *h*-representable. Blanchet-Sadri and Simmons [\[5\]](#page--1-0) showed that Rep is in $N\mathcal{P}$. Moreover, they showed that a certain subproblem of Rep is in ^P, namely the problem of deciding whether ^a set *^S* of words of length *ⁿ* can be represented by ^a partial word *w*, such that every subword of length *n* − 1 of the words in *S* occurs exactly once in *w* or in other words, every such subword can be obtained from exactly one factor of *w* of length *n* − 1 in which the holes are replaced by symbols from the alphabet of S. However, whether or not Rep is in P remained an open problem. They also gave a polynomial-time algorithm (polynomial in the input size $n|S|$) for deciding h -Rep, thus showed that h -Rep is in P , and their algorithm actually constructs an *h*-representation word. However, the actual exponent grows quickly with *h*. Tan and Shallit [\[20\]](#page--1-0) recently studied representable sets of words of equal length and focused on (circular) representation by total words, and Blanchet-Sadri and Lohr [\[3\]](#page--1-0) showed how to compute minimum length representations by total words.

This paper continues investigating representability of sets of words of equal length by partial words. Its contents are as follows: In Section 2, we review some background material on partial words. In Section 3, we discuss our graph theoretical approach to Rep. Given a set *S* of words of equal length *n*, we describe a decomposition of the Rauzy graph of order *n* − 1 associated with *S* into subgraphs, called blocks, that play a central role in our paper. Rauzy graphs are useful for studying subwords and are closely related to the de Bruijn graphs. A Rauzy graph is a subgraph of a de Bruijn graph, while a de Bruijn graph is a Rauzy graph associated with the set of all words of a given length. In Section [4,](#page--1-0) we describe polynomial-time algorithms for generating the factor set, S^i , and its extension, Ext (S^i) , related to each block *i*. In Section [5,](#page--1-0) using the factor sets and their extensions, we give a polynomial-time algorithm (in the size *n*|*S*| of the input) for deciding Rep, settling the question "Is Rep in ^P?". Our algorithm constructs ^a representation word if *^S* is representable. In Section [6,](#page--1-0) we introduce AllRep as the problem of determining all integers *^h* for which *^S* is *^h*-representable and show that this problem is in ^P. In Section [7,](#page--1-0) we describe a more efficient algorithm than the one in [\[5\]](#page--1-0) to solve *h*-Rep. Finally in Section [8,](#page--1-0) we conclude with some remarks. Part of this paper was presented at IWOCA'13 (the membership of REP in P appeared in [\[4\],](#page--1-0) while the membership of ALLREP in $\mathcal P$ and the more efficient algorithm for *h*-REP are new in this paper).

2. Preliminaries

We review some basic concepts.

A partial word w over a non-empty finite alphabet *A* is a sequence of symbols from $A_0 = A \cup \{ \diamond \}$, where $\diamond \notin A$ is the hole symbol (a *total word* over *A* is just a sequence of letters from *A*). The *length* of *w*, denoted by |*w*|, is the number of symbols in w. The symbol at position *i* is denoted by w[i] and the factor w[i] \cdots w[j - 1] by w[i., j). A position *i* is defined if *w*[*i*] ∈ *A* and it is a *hole* if *w*[*i*] = \diamond . The number of holes in *w* is denoted by h_w .

For two partial words *w* and *w* of equal length, *w* is *contained in w*, denoted by *w* ⊂ *w*, or *w contains w* , denoted by $w \supset w'$, if $w[i] = w'[i]$ for all defined positions *i* in w'. For example, $\diamond ab \circ a \subset \diamond abba$. Say that w and w' are *compatible*, denoted by $w \uparrow w'$, if $w[i] = w'[i]$ for all positions *i* that are defined in both *w* and *w'*. For example, $\triangle a b a \uparrow \triangle a \triangle b a$. A *completion* of a given partial word is a total word compatible with it. Another way to define compatibility is that *w* and *w'* share a common completion, e.g., $01 \diamond 0 \diamond$ and $\diamond 1 \diamond 01$ share the completion 01001 and are thus compatible.

The *greatest* lower bound of two partial words *u* and *v* of equal length is the partial word *w* defined by $w \subset u$, $w \subset v$, and if $w' \subset u$ and $w' \subset v$ then $w' \subset w$. For example, the greatest lower bound of 01 \triangle 11 and \triangle 1 \triangle 0 \triangle is \triangle 1 \triangle \diamond .

A *factor* of a partial word *w* over *A* is a block of consecutive symbols of *w* and a *subword* of *w* is a total word over *A* compatible with a factor of *w*. For any integer $n \ge 0$, denote by $\text{subw}(n)$ the set of subwords of *w* of length *n* and write $sub(w) = \bigcup_{0 \leq n} sub_w(n)$. For any set of partial words S and any $n \geq 0$, denote by $sub_S(n) = \bigcup_{s \in S} sub_s(n)$ the set of subwords of length *n* of the words in *S*, and write $\text{sub}(S) = \bigcup_{s \in S} \text{sub}(s)$.

3. Graph theoretical approach to REP

For any graph G, we denote by $V(G)$ the set of vertices of G and by $E(G)$ the set of edges of G. For any $V' \subseteq V(G)$, we denote by *G*[*V*] the subgraph of *G* induced by *V* . A digraph *G* is *strongly connected* if, for every pair of vertices *u* and *v*, there exists a path from *u* to *v*. Computing the strongly connected components of *G* can be done in $O(|V(G)| + |E(G)|)$ time by using Tarjan's algorithm [\[21\].](#page--1-0) For background material on graph theory, we refer the reader to [\[13\].](#page--1-0)

Let *S* be a finite set of total words of length *n*. Define the *Rauzy graph* of order *n* − 1, associated with *S*, with its set of vertices consisting of $\text{sub}_S(n-1)$ and its set of edges consisting of $\{(s[0..n-1),s[1..n)) | s \in S\}$. For every $s \in S$, we label edge *(s*[0*..n* − 1*), s*[1*..n))* by *s*. Note that a 0-representation word for *S*, if any exists, is a path in the Rauzy graph of order *n* − 1 associated with *S* that visits every edge at least once. For the remainder of this paper, *S* will denote a finite set of total words of length *n* and *G* will denote the Rauzy graph of order *n* − 1 associated with *S*.

Definition 1 (Decomposition into blocks). A partition $G = \bigcup_{i=0}^p G^i$ is the decomposition of G into blocks G^0, \ldots, G^p , called blocks 0*,..., p* of *G*, if

Download English Version:

<https://daneshyari.com/en/article/6875766>

Download Persian Version:

<https://daneshyari.com/article/6875766>

[Daneshyari.com](https://daneshyari.com)