Polynomial functions over finite commutative rings

Balázs Bulyovszky, Gábor Horváth*
Institute of Mathematics, University of Debrecen, Pf. 400, Debrecen, 4002, Hungary

A R T I CLE IN F O

Article history:

Received 30 March 2017
Received in revised form 23 July 2017
Accepted 4 September 2017
Available online xxxx
Communicated by V. Pan
Keywords:
Polynomial functions
Local rings
Interpolation

Abstract

We prove a necessary and sufficient condition for a function being a polynomial function over a finite, commutative, unital ring. Further, we give an algorithm running in quasilinear time that determines whether or not a function given by its function table can be represented by a polynomial, and if the answer is yes then it provides one such polynomial.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that given finitely many pairs $\left(a_{i}, b_{i}\right)(0 \leq i \leq n)$ over a field, there exists a polynomial p of degree at most n such that $p\left(a_{i}\right)=b_{i}$ for all $0 \leq i \leq n$. Several classical interpolation methods exist e.g. by Lagrange, by Newton or by Hermite to name a few. A direct consequence of these results is that an arbitrary function over a finite field can be represented by a polynomial. These methods, however, do not generalize in a straightforward manner to commutative rings. In fact, not even every function can be represented by a polynomial over a finite commutative ring which is not a field. The question arises naturally: given a finite ring R and a function $f: R \rightarrow R$, does there exist a polynomial $p \in R[x]$ such that $p(r)=f(r)$ for every $r \in R$, and if such polynomial exists, then how could one find such a polynomial?

Carlitz [1] gave several necessary and sufficient conditions for a function over $\mathbb{Z}_{p^{t}}$ being a polynomial function. For example, a function $f: \mathbb{Z}_{p^{t}} \rightarrow \mathbb{Z}_{p^{t}}$ is a polynomial function if and only if there exists $\phi_{0}, \ldots, \phi_{t-1}: \mathbb{Z}_{p^{t}} \rightarrow \mathbb{Z}_{p^{t}}$ such that

$$
f(r+s p)=\phi_{0}(r)+(s p) \phi_{1}(r)+\cdots+(s p)^{t-1} \phi_{t-1}(r)
$$

holds for every $r, s \in \mathbb{Z}_{p^{t}}$. Several generalizations of this result have been proved since, e.g by Spira [2] or later by Jiang, Peng, Sun and Zhang [3]. Note, however, that such a condition is not useful from an algorithmic perspective as it does not help finding a polynomial representing the input function f.

Guha and Dukkipati [4] gave an algorithmically useful necessary and sufficient condition for a function $f: \mathbb{Z}_{p^{t}} \rightarrow \mathbb{Z}_{p^{t}}$ being a polynomial function. Let $u_{0}: \mathbb{Z}_{p^{t}} \rightarrow \mathbb{Z}_{p^{t}}$ be the function defined by

$$
u_{0}(r)= \begin{cases}0, & \text { if } p \nmid r \\ 1, & \text { if } p \mid r\end{cases}
$$

and let $u_{k}: \mathbb{Z}_{p^{t}} \rightarrow \mathbb{Z}_{p^{t}}(1 \leq k \leq t-1)$ be

[^0]http://dx.doi.org/10.1016/j.tcs.2017.09.002
0304-3975/© 2017 Elsevier B.V. All rights reserved.
\[

u_{k}(r)= $$
\begin{cases}0, & \text { if } p \nmid r \\ r^{k}, & \text { if } p \mid r\end{cases}
$$
\]

Then f can be represented by a polynomial if and only if it is a linear combination of u_{0}, \ldots, u_{t-1} and their shifts. Further, they gave an algorithm running in $O\left(p^{t} t+p t^{3}\right)$ time finding a polynomial representing f if one exists. Later they generalized their results to functions over \mathbb{Z}_{n} [5]. Both papers [4,5] are based on Carlitz's result [1].

In this paper we generalize the results of Guha and Dukkipati $[4,5]$ to arbitrary finite, commutative, unital rings. Our proof is direct and is not based on Carlitz's result [1]. Further, we provide an algorithm running in quasilinear time (in the size of the ring) that determines whether or not a function (over a finite, commutative, unital ring) given by its function table can be represented by a polynomial, and if yes then computes one such polynomial, as well.

As every finite commutative, unital ring is a direct sum of local rings [6, Theorem VI.2], one only needs to consider these problems over finite, commutative, unital, local rings. In Section 2 we recall some basic facts necessary for our work. In particular, in Section 2.1 we summarize the most important properties of local rings, introduce functions u_{0}, \ldots, u_{t-1} for local rings and prove that they are indeed polynomial functions. In Section 3 we generalize Guha and Dukkipati's necessary and sufficient condition from [4] to arbitrary finite, commutative, unital, local rings by proving the following.

Theorem 1. Let R be a finite, commutative, unital, local ring with maximal ideal M. Let t be the smallest positive integer for which $M^{t}=\{0\}$. Let $f: R \rightarrow R$ be an arbitrary function. Then f is a polynomial function over R if and only if f can be written as a linear combination of the shifts of u_{0}, \ldots, u_{t-1}, where u_{0} is the characteristic function of M, and $u_{k}(x)=x^{k} u_{0}(x)(1 \leq k \leq t-1)$.

Let $f: R \rightarrow R$ be an arbitrary function given by its function table. That is, f is given as the set of pairs ($r, f(r)$) for all $r \in R$, and the size of f is $O(|R|)$. In Section 4 we provide an algorithm that runs in quasilinear time in $|R|$, determines whether or not f is a polynomial function, and if yes then computes a polynomial representing f.

Theorem 2. Let R be a finite, commutative, unital, local ring with maximal ideal M. Let t be the smallest positive integer for which $M^{t}=\{0\}$. Let $f: R \rightarrow R$ be an arbitrary function given by its function table. Then there exists an algorithm that decides whether or not f is a polynomial function, and if yes, then gives a polynomial that represents f, and the running time of this algorithm is

$$
T \leq \begin{cases}O(|R| t), & \text { if } M \text { is a principal ideal, and }|R / M| \geq t \\ O\left(|R| t^{2}\right), & \text { if } M \text { is a principal ideal, and }|R / M|<t \\ O\left(|R| t^{2} \log ^{3}|M|\right), & \text { if } M \text { is not a principal ideal. }\end{cases}
$$

Here and throughout the paper by log we mean base 2 logarithm. The running time of our algorithm is similar to that of Guha and Dukkipati $[4,5]$ for $\mathbb{Z}_{p^{t}}, p \geq t$. We need the notion of Galois rings in our algorithm, therefore we recall their main properties in Section 2.2.

2. Preliminaries

Let R be a finite, commutative, unital ring. A polynomial $p \in R[x]$ naturally induces a function $p_{f}: R \rightarrow R$ by substitution. A function $f: R \rightarrow R$ is a polynomial function if there exists a polynomial $p_{f} \in R[x]$ such that $p_{f}(r)=f(r)$ for every $r \in R$. Every finite commutative, unital ring is a direct sum of local rings [6, Theorem VI.2]. Therefore, to understand polynomial functions over an arbitrary finite, commutative, unital ring, it is enough to consider local rings in the following.

2.1. Local rings

A ring is local if it has a unique maximal ideal. We summarize some of the most important properties of local rings by [6, Chapter V]. Let R be a finite, commutative, unital, local ring with maximal ideal M. Let t denote the smallest positive integer for which $M^{t}=\{0\}$. Note, that the quotient R / M is a field, and for the set of invertible elements we have $R^{\times}=R \backslash M$. Further, if $M=(m)$ is a principal ideal, then every $r \in R$ can be written in the form $s m^{i}$ for some $s \in R^{\times}$and $0 \leq i \leq t$, and then all ideals of R are principal ideals generated by m^{i} for some $0 \leq i \leq t$.

Let $r \in R$ and $f: R \rightarrow R$ be an arbitrary function. Let the shift of f by r be the function $f_{r}: R \rightarrow R, f_{r}(x)=f(x-r)$. Note that if $f, g: R \rightarrow R$ are polynomial functions, then $f+g, r \cdot f$ and f_{r} are polynomial functions, as well (for every $r \in R$).

Let $u_{1}, \ldots, u_{k}: R \rightarrow R$ be arbitrary functions. Let $\left\langle u_{1}, \ldots, u_{k}\right\rangle$ denote the set of functions that can be written as a linear combination of shifts of u_{1}, \ldots, u_{k} with coefficients from R.

For every $k \in\{0, \ldots, t-1\}$ let $u_{k}: R \rightarrow R$ be the function defined as

$$
u_{0}(x)= \begin{cases}0, & \text { if } x \notin M \tag{1}\\ 1, & \text { if } x \in M\end{cases}
$$

and

https://daneshyari.com/en/article/6875789

Download Persian Version:
https://daneshyari.com/article/6875789

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: bulyovszkyb@hotmail.com (B. Bulyovszky), ghorvath@science.unideb.hu (G. Horváth).

