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namely o-concave hull, as a generalization of convex hull. The parameter & determines
the smoothness level of the constructed hull on a set of points. We show that it is NP-
hard to compute «-concave hull on a set of points for any 0 < o < . This leads us to a
generalization of Fekete work (when o = 7). We also introduce &« — MACP as an NP-hard

Keywords: problem similar to the problem of computing «-concave hull and present an approximation
Convex hull algorithm for &« — MACP. The paper ends by implementing the proposed algorithm and
«-Shape comparing the experimental results against those of convex hull and «-shape models.
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1. Introduction

The convex hull of a set of points S in the plane, is the smallest convex polygon containing S. Many algorithms have been
introduced for computing the convex hull of points [1-8]. Convex hull is used in many fields such as pattern recognition,
image processing, GIS, sensor networks, path planning, etc. [9-15]. Computing the convex hull of S has an optimal O (nlogn)
algorithm [3].

The Minimum Area Polygon (MAP) of a set of points S in the plane, is the problem of computing the smallest simple
polygon containing S. The Maximum Area Polygon (MAXP) of a set of points S in the plane, is the problem of comput-
ing the simple polygon with maximum area that passes through all points of S. Fekete in [16] considered MAP for the
grid points and denoted this problem by GAP. He demonstrated that GAP and MAXP are NP-complete [16,17]. He also
presented a %-approximation algorithm for MXAP [18] and proved that there does not exist any (% + &)-approximation
algorithm for this problem for 0 < & < % unless P = NP.

Here, we consider convex and concave hulls on the set of points in the plane. We introduce a generalization of convex
hull and MAP called «-concave hull such that the parameter « limits the internal angles of the constructed hull. We then
show that it is NP-hard to compute «-concave hull on a set of points for any 0 <« < 7.

Bae et al. [19] used convex hull to cover a set of points with convex sets of minimum total area or perimeter size.
In [20], Jin-Seo Park and Se-Jong Oh showed that for identifying the exact area occupied by a set of points, concave hull
region was more useful than convex hull. The concept of Concave Hull was first introduced as (non-convex footprint) by
A. Galton and M. Duckham in [21] and then it was expanded in [22]. In [20] an algorithm was presented to compute
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Concave Hull in d dimensions. Concave Hull has an effective applicability in the fields of shape reconstruction [23,24],
material computation [24], GIS [25], dataset classification [26], etc.

The o-shape is another generalization of convex hull which was introduced by Edelsbrunner in [27]. The «-shape has
expanded applicability in shape reconstruction [28], space decomposition [29], sensor networks [30], bioinformatics [31],
feature detection [32], 3D visualization (of brain tumor) [33], etc.

x-hull and Crust are another non-convex hulls to cover a set of points. The Crust concept was developed as a graph on
the set of points in R? [34] and R> [35] and x-hull was introduced in [36] as a simple subpolygon of Delaunay triangulation
of the set of points.

The a-concave hull on a set of points in the plane is a non-convex hull with angular constraints under the minimum
area condition. For & = 0, computing «-concave hull is equivalent to that of computing convex hull with O (nlogn) optimal
algorithm. For o = 7r, this problem converts to MAP as it is proved to be NP-complete.

In this paper, we put forward an NP-hard problem called Maximum Area Clustering Problem (&« — MACP) on a set of
points which produces the same results as the a-concave hull. We also present a }l—approximation algorithm for « — MACP.

The structure of the paper is as follows. In section 2 we unveil the concept of «-polygon and «-concave hull and prove
that computing an «-polygon with a given area on a set of points is an NP-complete problem. Likewise, we demonstrate
that it is NP-hard to compute «-concave hull on a set of points for any 0 < o < 7. In section 3 we introduce « — MACP as
a problem equivalent to that of computing «-concave hull and an approximation algorithm is presented to deal with it. This
is then followed by a discussion on the factor of the approximation algorithms for a-concave hull. Section 4 is devoted to
experimental work and implementing our proposed approximation algorithm. We then compare the results achieved by this
solution against known methods that employ convex hull and «-shape to verify its outperformance. Section 5 concludes the
paper.

2. o-Concave hull

As was mentioned in the previous section, many concepts have been studied as concave hull of a set of points. Previous
studies on concave hull did not consider any limitation on angles nor area of the constructed polygons. In this section we
disclose the concept of a-concave hull as a concave hull with angular constraint under the minimum area condition. Let us
first define the concept of a-polygon as follows:

Definition 2.1. Let A be a simple polygon. A is called «-polygon if all internal angles of A are equal or less than 7 + «.

Definition 2.2. «-Concave hull on a set of points S is an «-polygon containing S with minimum area such that all the
vertices of the polygon are a subset of S.

Based on those definitions, when o = 0, «-polygon is equal to a convex polygon, hence, the a-concave hull of S for « =0
is equal to convex hull of S. In the case of o« = m, a-polygon is equal to a simple polygon, hence, computing «-concave
hull of S for « = m converts to MAP for S. Consequently, o-concave hull definition is a generalization of the convex hull
concept and computing «-concave hull, is a generalization of MAP. The computing convex hull problem has O (nlogn)
optimal algorithm while MAP is NP-complete.

Fig. 1 illustrates «-concave hulls on a set of points where we consider various values for the parameter «. As stated
above, when « = 0, a-concave hull is equal to convex hull of the points. For o = 12°, concave angles would be constructed
in a-concave hull. When « > 120°, the boundary of «-concave hull would pass through all of the points. When o = 180°,
a-concave hull is a simple polygon with minimum area that passes through the points which is a solution of MAP for this
set of points.

Remark 1. o-Concave hull on a set of points is not unique for a fixed value of «. Fig. 2 shows an example of two different
a-concave hulls on a set of points.

Based on the Remark 1, a-concave hull on a set of points is not unique for a fixed value of «. The following theorem,
however, expresses that the set of boundary points on various «-concave hulls with a fixed value of « is unique on the set
of points.

Theorem 2.1. For a set of points S and a fixed value of «, if A1 and A, are two «-concave hulls on S, then boundary points of A1 and
A will be equal.

Proof. Let B1, B, and CH be the boundary points of A1, A and convex hull of S, respectively. By reductio ad absurdum,
suppose B1 and B are not equal. Without loss of generality, we have a point called z in which z ¢ B, and z € B;. So, the
polygonal chain C1 =axyx2...z...x;b from a to b is on By such that a,b € CH are two adjacent vertices in CH. As a, b € B,
so the polygonal chain C; =ay1ys...ymb is also placed on B,. Fig. 3 shows the chains. Since the beginning and ending
vertices of the chains C; and C, are equal and z € C; but z ¢ C;, C; and C; cross each other at least once at a point c. As
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