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We consider global dynamics of reaction systems as introduced by Ehrenfeucht and 
Rozenberg. The dynamics is represented by a directed graph, the so-called transition graph, 
and two reaction systems are considered equivalent if their corresponding transition graphs 
are isomorphic. We introduce the notion of a skeleton (a one-out graph) that uniquely 
determines a directed graph. We provide the necessary and sufficient conditions for two 
skeletons to define isomorphic graphs. This provides a necessary and sufficient condition 
for two reactions systems to be equivalent, as well as a characterization of the directed 
graphs that correspond to the global dynamics of reaction systems.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Determining whether two graphs are isomorphic is one of the archetypical problems in graph theory and plays an im-
portant role in many applications and network analysis problems. Although there have been significant advances for this 
problem in the past year [1], the problem remains difficult. On the other side, often in network analysis, graphs are parti-
tioned in so called ‘modules’ where each vertex in a module is adjacent to the same set of vertices outside the module [9]. 
Modules in directed graphs are defined as sets of vertices that have incoming and outgoing edges from, and to, the same 
vertices outside the module and it is shown that modular decompositions can be performed in linear time [11]. In this 
paper we study graph isomorphism through a variation of this notion, where we consider vertices that have the “same” 
incoming edges, and we call such vertices “companions”. These vertices are precisely those that belong to the same region 
in the Venn diagram constructed out of the family of out-sets (an out-set for v is the set of vertices that have incoming 
edges starting at v). We further define a “skeleton” of a graph G = (V , E) as a one-out graph over a set V such that the set 
of vertices that have non-zero in-degree are representatives of the family of out-sets. A skeleton defines uniquely a directed 
graph and we characterize skeletons of isomorphic graphs. Skeletons of isomorphic graphs are called “companion skele-
tons”. In particular, skeleton edges swapped at companion vertices produce companion skeletons. This observation allows 
characterizations of reaction systems (described below) that exhibit the same global dynamical behavior.

A formal description of biochemical interactions within a confined region bounded with a porous membrane that can 
interact with the environment has been introduced in [5], see [2] for an overview of the theory. This formal model, called 
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“reaction systems”, is based on the idea that each reaction depends on the presence of a compound of enzymes, or facili-
tators, and the absence of any other control substance that inhibits the process. It is assumed further that the reaction is 
enabled only if the region contains all of the enabling ingredients and none of the inhibitors. In addition, if some ingredients 
are present in the system, the model allows their presence to be sufficient to enable all reactions where they participate. 
Formally, a reaction is modeled by a triple of sets (reactants, inhibitors, results) while the reaction system then represents a 
set of such triples. In each step, the system produces resulting elements according to the set of reactants that are enabled. 
It is further assumed that there is a universal set of elements that can enter the system from the outside environment and 
interact with the reactants at any given time. Several studies have addressed the question of the dynamics of the system 
(the step by step changes of the states of the system), such as reachability [4], convergence [8], fixed points and cycles [7,6]. 
It has been observed that the complexity of deciding existence of certain dynamical properties falls within PSPACE (reach-
ability) or NP-completeness (fixed points and fixed point attractors). In all of these studies, however, the changes in the 
dynamics through inclusion of new elements entering from the outside environment has not been considered. We call this 
condition of no outside involvement within the system as a 0-context reaction system. In this paper we study the relation-
ship between the dynamics of the 0-context reaction systems and the global dynamics of the reaction system that depends 
on the environmental context. We observe that quite different dynamical properties of 0-context reaction systems produce 
equivalent global dynamics.

We represent the dynamics of a reaction system as a directed graph where each vertex is a state of the system repre-
sented as a set of elements present at the system at a given time. A directed edge from a vertex terminates at a vertex 
representing the new state of the system after all reactions enabled at the origin, with possible additions from the outside 
environment, are performed. In this way, the graph of the 0-context reaction system is a one-out graph (a skeleton) and is 
a subgraph of the graph of the full dynamics of the system. We characterize the graphs representing the global dynamics of 
reaction systems and show that two reaction systems are equivalent if their 0-context graphs are companion skeletons.

2. Subsets and companions

We denote [n] = {0, 1, . . . , n − 1}. The power set of a set A is denoted by 2A . The number of elements of a finite set A is 
denoted by |A| and is called the size of A. Given a function f : X → Y , the natural equivalence on X defined by f is denoted 
with kerf , i.e., x kerf y if and only if f (x) = f (y). For x ∈ X the equivalence class of kerf is denoted [x] f . For a finite set V , 
let O ⊆ 2V be a family of subsets of V . We say that O is a family of sets with domain V . The elements in V that appear 
in the same region of the Venn diagram for O are “companions” with respect to O. Formally, let NO(x) = {X ∈ O | x ∈ X}
be the subfamily containing all sets that include x and Nc

O(x) its complement in O, the subfamily of those sets that do not 
contain x. We call NO(x) the neighborhood of x.

Definition 2.1. Let V be a finite set and O ⊆ 2V be a family of subsets of V . Two elements x, y ∈ V are companions with 
respect to O if NO(x) = NO(y). We write x ∼O y and denote the equivalence class of x by CO(x). The set CO(x) is called a 
companion set.

Thus, the equivalence class of every element x ∈ V , the set of companions of x relative to O, is the intersection of all 
sets in O that include x minus the union of the remaining sets in O, i.e. CO(x) = ⋂

NO(x) \⋃
Nc

O(x). The same equivalence 
based on neighborhoods of elements with respect to a family was also used in [3] where authors study activity regions for 
a set of neurons and the convexity of these regions was considered. A special case is when NO(x) = ∅, i.e., when x /∈ ⋃

O, 
in which case it is in the outer region, V \ (

⋃
O) denoted by 

(⋃
O

)c , of the Venn diagram for O. That is, by convention, ⋂
NO(x) = ⋂

∅ = V and CO(x) = (⋃
O

)c .
The converse also holds. Any intersection of sets in P ⊆ O minus the union of the remaining sets Pc = O \ P forms an 

equivalence class CP , provided it is non-empty. More precisely, any non-empty CP = ⋂
P \ ⋃

Pc for some P ⊆ O coincides 
with CO(x) for some x ∈ V . Assuming x ∈ CP , it implies x ∈ X for every X ∈ P and x /∈ Y for every Y ∈ Pc . Hence, x ∈⋂

NO(x) \ ⋃
Nc

O(x) = CO(x) and CP ⊆ CO(x). Conversely, if y ∈ CO(x) then y ∈ ⋂
NO(x) which is precisely 

⋂
P and y /∈⋃

Nc
O(x) = ⋃

Pc for P =NO(x) and hence CO(x) ⊆ CP . Thus, CP = CO(x).
Therefore, every equivalence class C of ∼O is characterized by a subset P ⊆ O, its neighborhood, such that C = ⋂

P \⋃
Pc . In general, not every P ⊆ O defines an equivalence class, i.e., 

⋂
P \ ⋃

Pc might be empty. This is the case when the 
corresponding region of the Venn diagram of O is empty.

For a family of sets O we denote with O∩ the smallest family of sets that contains O and is closed under intersection. 
We say that O∩ is the intersection closure of O. If O =O∩ we say that O is intersection closed.

Example 2.1. Consider the finite set V = {1, 2, . . . , 8} and the family of subsets O ⊆ 2V given by O = {{1, 2, 3, 4}, {4, 5}, {5}}. 
Then O∩ = O ∪ {{4}}. Note that CO(1) = ⋂

NO(1) \ ⋃
Nc

O(1) = {1, 2, 3, 4} \ ({4, 5} ∪ {5}) = {1, 2, 3} = CO(2) = CO(3) and 
CO(4) = {4}. Thus, the family O defines the following companion sets: {1, 2, 3}, {4}, {5}, and {6, 7, 8}, where each nonempty 
region in the corresponding Venn diagram is a companion set.

In the sections that follow we use a correspondence of families of sets, that have the same sizes of the sets as well as 
their intersections.
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