
Theoretical Computer Science 700 (2017) 45–62

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Locating maximal approximate runs in a string ✩

Mika Amit a,∗, Maxime Crochemore c,d, Gad M. Landau a,b, Dina Sokol e

a Department of Computer Science, University of Haifa, Mount Carmel, Haifa, Israel
b Department of Computer Science and Engineering, NYU Polytechnic School of Engineering, New York University, Brooklyn, NY, USA
c King’s College London, Strand, London WC2R 2LS, UK
d Université Paris-Est, Institut Gaspard-Monge, 77454 Marne-la-Vallée Cedex 2, France
e Department of Computer and Information Science, Brooklyn College of the City University of New York, Brooklyn, NY, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 January 2017
Received in revised form 24 June 2017
Accepted 29 July 2017
Available online 4 August 2017
Communicated by L.M. Kirousis

Keywords:
Algorithms on strings
Pattern matching
Repetitions
Tandem repeats
Runs

An exact run in a string T is a non-empty substring of T that is a repetition of a smaller
substring possibly followed by a prefix of it. Finding maximal exact runs in strings is an
important problem and therefore a well-studied one in the area of stringology. For a given
string T of length n, finding all maximal exact runs in the string can be done in O (n logn)

time on general ordered alphabets or O (n) time on integer alphabets. In this paper, we
investigate the maximal approximate runs problem: for a given string T and a number k,
find non-empty substrings T ′ of T such that changing at most k letters in T ′ transforms
them into a maximal exact run. We present an O (nk2 log2 k + occ) algorithm to solve this
problem, where occ is the number of substrings found.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Periodicities and repetitions are ubiquitous in nature, and they play a central role in the field of stringology. They are used
to obtain efficient algorithms for pattern matching problems, to conserve space via text compression, and to better analyze
data, e.g. in biological sequences. The research of repetitions and their characteristics has been thoroughly investigated for
both exact and approximate ones.

Exact repetitions: Several methods are available to detect all the occurrences of exact squares in strings, where a square is
defined as exactly two consecutive copies of a pattern (see [6,2,25]). For a given string T , of length n, these algorithms run
in O (n log n) time, which is optimal since it is possible for a string to contain �(n log n) squares. Selecting some of their
occurrences, or just distinct squares, regardless of their number of occurrences, paved the path to faster algorithms [21,14]
(for constant alphabets) and [4] (for integer alphabets).

Runs have been introduced by Iliopoulos, Moore, and Smyth [15], and are defined as repetitions with two or more
consecutive copies of a pattern. They showed that Fibonacci words contain only a linear number of maximal runs. Kolpakov
and Kucherov [19] (see also [8], Chapter 8) proved that this property holds for any string. In [3], the authors provided a

✩ A preliminary version appeared in the proceeding of CPM 2013.

* Corresponding author.
E-mail addresses: mika.amit2@gmail.com (M. Amit), maxime.crochemore@kcl.ac.uk (M. Crochemore), landau@cs.haifa.ac.il (G.M. Landau),

sokol@sci.brooklyn.cuny.edu (D. Sokol).

http://dx.doi.org/10.1016/j.tcs.2017.07.021
0304-3975/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2017.07.021
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:mika.amit2@gmail.com
mailto:maxime.crochemore@kcl.ac.uk
mailto:landau@cs.haifa.ac.il
mailto:sokol@sci.brooklyn.cuny.edu
http://dx.doi.org/10.1016/j.tcs.2017.07.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.07.021&domain=pdf

46 M. Amit et al. / Theoretical Computer Science 700 (2017) 45–62

simple and elegant proof that the number of maximal runs in a string of length n is at most n − 3. Recently, in [11], it was
shown that for binary strings this number is bounded by 0.957n.

In [19], the authors designed an algorithm to compute all maximal runs in a string of length n over an alphabet �. The
time complexity of this algorithm is O(n log |�|). Their algorithm extends Main’s algorithm [24], which itself extends the
method in [7] (see also [8]).

The design of a linear-time algorithm for building the Suffix Array of a string on an integer alphabet (see [16–18]) and
the introduction of another related data structure (the Longest Previous Factor table in [9]) have eventually led to a linear-
time solution (for integer alphabet) for computing all maximal runs in a string. This is a consequence of the linear-time
computation of the Ziv–Lempel factorization on integer alphabets (see [1] and [5]), which removed the O (n log |�|) time
bottleneck in the Kolpakov–Kucherov algorithms [19]. A recent algorithm by Bannai et al. [3] uses similar tools and also runs
in linear time. On an ordered alphabet, namely where letters can be compared w.r.t. a linear order, the optimal computing
time is O (n log n) [25,10].

Approximate repetitions: In many applications, finding approximate runs is more sensible than finding exact runs. A typical
example is genetic sequence analysis. This problem was widely researched and many different measurements have been
used in order to find such runs. In [27], a k-approximate run is defined as follows: a string x is an approximate run if there
exists a consensus string u such that x can be divided into a number of adjacent occurrences of substrings x = u1u2 · · · ut
where the distance between u and every ui is not greater than k. In this version of the problem, the difference between
two periods ui and u j can be as big as 2k, for example: the string x = bacd abdc cbad is a 2-approximate run, since the
difference between the substring u = abcd and each ui , 1 ≤ i ≤ 3 is exactly 2. [27] provide an O (n3)-time algorithm for
finding all such maximal repetitions in an input string of size n.

A different approach to the problem is defined as follows [13]: given a string x and an integer k, x is an approximate
run if it can be divided into a number of adjacent substrings x = u1u2 · · · ut , such that the sum over all distances between
adjacent substrings, ui and ui+1, is not greater than k. In this version, the first period and the last period can be completely
different from each other. For instance: the string x = abcd dbcd dccd dcbd dcba is a 4-approximate run. [13] provide an
O (n2)-time algorithm for finding such maximal approximate runs in a string. This version of the problem can be extended
to the problem where the sum over all distances between every two substrings ui and u j in x (for 1 ≤ i < j ≤ t) cannot
exceed k. In this case, all substrings ui , 1 ≤ i ≤ t must be similar to each other, as one error between two substrings ui
and u j may imply O (t) errors. For example, the string x = (abcd)t−1abed is a (t − 1)-approximate run according to this
definition.

In [22] another definition of approximate run is given: a substring x is a k-approximate run if x = u1u2 · · · ut and the
removal of the same k positions from each ui will generate an exact run. According to this definition, any number of
mismatches in the same column of the period is counted as 1 mismatch. For example, the string x = abcd abdd abbd abad
is a 1-approximate run. The algorithm for finding such repetitions [22] has time complexity O (nka log(n/k)), where n is
the length of the input string, k is the number of allowed error columns, and a is the maximum number of periods in any
found repeat.

In this paper we introduce a novel, more global definition of an approximate run. Informally, in our problem we count the
total number of letters that need to be replaced in order to generate an exact run. A k-approximate run can be transformed
into an exact run through the modification of at most k letters. This definition is similar to the one presented in [27], as it
finds a consensus string u that is similar to all substrings ui of x. But, as opposed to the former version, this version sums
the total number of differences between all ui and u, which requires the substrings to be more similar to each other. The
formal definition of the problem is given in Section 2. For example, the substring x = bacd abdc cbad, that contains periods
that are very different from each other, is a 2-approximate run according to the former definition, and in our problem
definition, it is a 6-approximate run. Note that the substring x = abcd aadd abcd abcd is a 2-approximate run according to
both definitions. In this paper we present an O (nk2 log2 k + occ)-time algorithm to find such maximal approximate runs in
a given input string of length n, where occ is the number of maximal approximate runs that are found.

Roadmap: We start in Section 2 with definitions and notations that will be used throughout the paper. In Section 3, we
present the main procedure of our algorithm. Initially, in subsection 3.1, we describe a simple O (n) algorithm for the main
procedure, and then in subsection 3.4 we present an improved O (k3) algorithm for it. In Section 4, we describe the efficient
O (k2 log k)-time algorithm for the main procedure. Finally, in Section 5, we present the entire algorithm for searching a
given input string of length n for maximal approximate runs with k modifications.

2. Definitions and notation

Let T = T [1]T [2] · · · T [n] be a string of size n defined over the constant size alphabet �. We denote the substring of T
that starts at position i and ends at position j as Ti, j = T [i]T [i + 1] · · · T [j]. A position h is contained in the substring Ti, j if
i ≤ h ≤ j. The following definitions are needed in order to formally define the problem we solve in the paper.

Exact run. An exact run is a non-empty string, x, that can be written as x = u1ut u2, where t ≥ 2, the first substring u1 is a
(possibly empty) suffix of u, and the last substring u2 is a (possibly empty) prefix of u. u is called a period and its length

Download English Version:

https://daneshyari.com/en/article/6875866

Download Persian Version:

https://daneshyari.com/article/6875866

Daneshyari.com

https://daneshyari.com/en/article/6875866
https://daneshyari.com/article/6875866
https://daneshyari.com

