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contrast to this positive result for strings, we find that, in any Kolmogorov numbering,
no enumerator of nontrivial size can generate a list containing the minimal index of
a given partial-computable function. One cannot even achieve a laconic enumerator for
nearly-minimal indices of partial-computable functions.
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1. Short list approximations for minimal programs

No effective algorithm exists which computes shortest descriptions for strings, let alone lexicographically least descrip-
tions. Such an algorithm would contradict the well-known fact that Kolmogorov complexity is not computable [11]. This
paper investigates the extent to which one can effectively enumerate a “short” list of candidate indices which includes the
lexicographically minimal program for a given string or a function.

Definition 1. An enumerator is an algorithm which takes an integer input and, over time, enumerates a list of integers. For
an enumerator f, we let f(e) denote the set of all elements which f eventually enumerates on input e.

Enumerators with non-trivial list sizes (i.e., of size much smaller than the length of the string x) fail to list-approximate
Kolmogorov complexity. Indeed any enumerator f such that f(x) always contains the Kolmogorov complexity of x must, for
all but finitely many n, for some string x of length n, include in the list f(x) at least a fixed fraction of the lengths below
n+ O(1) [4]. One might expect a similar result for enumerators whose enumerations always include the minimal index
for a desired string — that is, one might expect the enumerators to enumerate all but a constant fraction of indices with
length at most n. However in Theorem 3 below we show that for every universal machine for Kolmogorov complexity, there
exists an enumerator f such that for all x, | f(x)] = O(|x|]) and f contains the minimal program for x. In contrast, we show
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that enumerators with short lists (of sublinear size) fail to list minimal indices for functions and that even enumerators
containing nearly-minimal indices have large list sizes.

Prior investigations on short list-approximations of minimal indices for strings and functions have focused on computable
functions. Bauwens, Makhlin, Vereshchagin, and Zimand [2]| proved the optimal result that for any universal machine one
can compute a quadratic-length list containing a description for a given string which is no more than O (1) bits longer than
that string’s minimal description length. Teutsch [14] showed that one can do the same thing in polynomial-time if one
relaxes the size of the list-approximation from quadratic to polynomial-length; see [18] for an alternative construction and
a slightly shorter list. Bauwens and Zimand [3] showed that a randomized procedure can even achieve a linear-length list
which, with high probability, contains a minimal description of the given string which is within O (logn) bits of optimal.
Most recently, Vereshchagin [17] solved a problem posed in a preliminary version of [15] by showing that short computable
list-approximations of minimal indices for functions do not exist. See [16] for a survey of related results.

We now introduce the notation and key definitions for this manuscript. A numbering ¢ is a partial-computable func-
tion (e, x) — @e(x). We say ¢ is a Godel numbering if for any further numbering v, there exists a computable translator
function ¢ such that ¢e) = Ve. If in addition ¢t satisfies t(e) < c-e + c for some constant ¢ (depending on ), then ¢ is
called a Kolmogorov numbering, and we call such a computable, linearly-bounded t a Kolmogorov translator from ¢ to ¢.
Similar to universal machines for Kolmogorov complexity, which we define below, Kolmogorov numberings admit incoming
translations which produce at most O (1)-bits increase in program size.

Kolmogorov himself introduced the notion of Kolmogorov numberings under the name “asymptotically optimal” [9].
Schnorr [12] later shortened this to “optimal numberings” and proved the following fundamental result.

Schnorr’s Linear Isomorphism Theorem (/12]). For every pair of Kolmogorov numberings ¢ and v, there exist a computable,
bijective function t such that

(1) t and t~! are both bounded by some linear function, and
(11) Yy = @e foralle.

(It follows that also e = @y-1,, for all e.)

We thank the anonymous referee who pointed us to the above valuable result which simplified and improved theorems
from an earlier version of this paper.

For a Turing machine M, we let Cp(x) = min{|p|: M(p) = x} denote the Kolmogorov complexity of x with respect to M.
A machine U is called universal if for any further machine M, Cy (x) < Cp(x) + O(1). Universal machines exist [11].

Definition 2. For two partial-computable functions f and g, we say f =* g if f and g agree everywhere except on a finite
set. For any numbering ¢,

(1) let ming(e) denote the least index j such that ¢; = ¢, and
(1) let minj’; (e) denote the least index j such that ¢; =" ¢e.

Similarly, for any universal machine U,

(u1) let miny (x) denote the length lexicographically least program p such that U(p) = x, and
(1v) let miny (x | y) denote the length lexicographically least program p such that U({p, y)) = x.

Let “p.c.” stand for partial-computable, and let K denote the halting set for some fixed Godel numbering. Let (-, -) denote
a canonical, computable pairing function, and extend (-, -) to pairing of n-tuples by taking (x1, X2, ..., Xn) = (X1, (X2, ..., Xp)).
Finally, let |x| = [log(x 4+ 1)] be the size of the string x in binary. domn denotes the set of values on which the partial
function 7 is defined.

2. Strings

For any string x and any universal machine U, one can generate a list of length |x| + O (1) containing a minimal-length
program for x by enumerating the first program found for x at each length. We can even enumerate the length lexicograph-
ically least program.

Theorem 3. For every universal machine U, there exists an enumerator f such that for all strings x, | f (x)| = O (|x|) and miny (x) €

f).

Proof. Let U be a universal machine, and let a be a constant such that for each string x there exists a program p of size at
most |x| 4+ a such that U(p) =x. We define a further machine M as follows. Let T, be the set of all x such that U(q) =x
for at least 2° many different values q of length n.
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