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Circular D0L-systems are those with finite synchronizing delay. We introduce a tool called 
graph of overhangs which can be used to find the minimal value of synchronizing delay of 
a given D0L-system. By studying the graphs of overhangs, a general upper bound on the 
minimal value of a synchronizing delay of a circular D0L-system with a binary uniform 
morphism is given.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Circular codes are a classical notion studied in theory of codes [1]. A set X of finite words is a code if each word in X+
has a unique decomposition into words from X . If we slightly modify the requirement of uniqueness, we get the definition 
of a circular code: X is a circular code if each word in X+ written in a circle has a unique decomposition into words from X .

An analogue to codes in the family of D0L-systems are D0L-systems that are injective on the set of all factors of their 
languages. Circularity is defined as slightly relaxed injectivity: a D0L-system is circular if long enough factors of its language 
have a unique preimage (under the respective morphism) in the language except for some prefix and suffix bounded in 
length by some constant. This constant is called a synchronizing delay and it is studied in this paper.

In the case of D0L-systems circularity is connected with repetitiveness. As stated in [2], a non-circular D0L-system is 
repetitive, i.e., for each k ∈ N there exists a word v such that vk is a factor of the language. In fact, if a D0L-system is 
not pushy (which is always true if the morphism is uniform and the language is infinite), then circularity is equivalent to 
non-repetitiveness [3].

As explained by Cassaigne in [4], knowledge of the value of the synchronizing delay can be very helpful when analyzing
the structure of bispecial factors in languages of D0L-systems. This idea was further developed by one of the authors in [5], 
where an algorithm for generating all bispecial factors is given. This algorithm works for circular and non-pushy D0L-systems 
and its computational complexity depends on the value of the synchronizing delay. This fact and the absence of any known 
bound on the value of synchronizing delay is the main motivation of the present work.

Unfortunately, it does not seem easy to find such a bound. Therefore we focus on the simplest case: a circular D0L-system 
with binary k-uniform morphism with k ≥ 2. Using the notion of the graph of overhangs introduced in Subsection 2.2, we 
prove the following result. The details of the proof are given in Section 3.
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Theorem 1. If the morphism ϕ of a circular D0L-system ({a, b}, ϕ, a) is k-uniform, then the minimum value of its synchronizing delay, 
denoted by Zmin, is bounded as follows:

(i) Zmin ≤ 8 if k = 2,
(ii) Zmin ≤ k2 + 3k − 4 if k is an odd prime number,

(iii) Zmin ≤ k2
(

k
d − 1

)
+ 5k − 4 otherwise,

where number d is the least divisor of k greater than 1.

2. Preliminaries

A finite set of symbols is an alphabet, denoted by A . The set of all finite words over A is denoted by A∗ , the empty word
is ε and A+ = A∗ \ {ε}. If a word u ∈ A∗ is a concatenation of three words x, y and z from A∗ , i.e., u = xyz, the word x is 
a prefix of u, y its factor and z a suffix. We put x−1u = yz and uz−1 = xy. The length of the word u equals the number of 
letters in u and is denoted by |u|; |u|a denotes the number of occurrences of a letter a in u.

A mapping ϕ : A∗ → A∗ is a morphism if for every v, u ∈ A∗ we have ϕ(vu) = ϕ(v)ϕ(u). A triplet G = (A, ϕ, w) is a 
D0L-system, if ϕ is a morphism on A and w ∈ A+ . The word w is called an axiom. The language of G is the set L(G) =
{ϕn(w) : n ∈ N}. The set of all factors of elements of L(G) is denoted by S(L(G)). The alphabet is always considered to be 
the minimal alphabet necessary, i.e., A ∩ S(L(G)) = A .

A D0L-system G = (A, ϕ, w) is injective on S(L(G)) if for every u, v ∈ S(L(G)), ϕ(u) = ϕ(v) implies that u = v . It is clear 
that if ϕ is injective, then G is injective. If ϕ is non-erasing, i.e., ϕ(a) �= ε for all a ∈ A , then G is a propagating D0L-system, 
shortly PD0L-system.

Given a D0L-system G = (A, ϕ, w), we say that a letter a is bounded if the set {ϕn(a) : n ∈ N} is finite. If a letter is not 
bounded, it is unbounded. The system G is pushy if S(L(G)) contains infinitely many factors containing bounded letters only.

A D0L-system G is repetitive if for any k ∈ N there is a non-empty word v such that vk is a factor from S(L(G)). By [6], 
any repetitive D0L-system is strongly repetitive, i.e., there is a non-empty word v such that vk is a factor for all k ∈ N. We 
say that G is unboundedly repetitive if there is v containing at least one unbounded letter such that vk is a factor for all 
k ∈N.

2.1. Circular D0L-systems

In [4], a circular D0L-system is defined using the notion of synchronizing point (see Section 3.2 in [4] for details). We 
give here an equivalent definition employing the notion of interpretation.

Definition 2. Let G = (A, ϕ, w) be a PD0L-system and u ∈ S(L(G)). A triplet (p, v, s), where p, s ∈ A∗ and v ∈ S(L(G)), is an 
interpretation of the word u if ϕ(v) = pus.

Definition 3. Let G = (A, ϕ, w) be a PD0L-system. We say that two interpretations (p, v, s) and (p′, v ′, s′) of a word u ∈
S(L(G)) are synchronized at position k if there exist indices i and j such that

ϕ(v1 · · · vi) = pu1 · · · uk and ϕ(v ′
1 · · · v ′

j) = p′u1 · · · uk

with v = v1 · · · vn ∈ An , v ′ = v ′
1 · · · v ′

m ∈ Am and u = u1 · · · u� ∈ A� (if k = 0, we put u1 · · · uk = ε). Two interpretations that 
are not synchronized at any position are called non-synchronized.

We say that a word u ∈ S(L(G)) has a synchronizing point at position k with 0 ≤ k ≤ |u| if all its interpretations are 
pairwise synchronized at position k.

Definition 4. Let G = (A, ϕ, w) be a PD0L-system injective on S(L(G)). We say that G is circular if there is a positive 
integer Z , called a synchronizing delay, such that any u from S(L(G)) longer than Z has a synchronizing point. The minimal 
constant Z with this property is denoted by Zmin.

By the results from [2,3], non-circular systems are repetitive (and by [6] also strongly repetitive). In fact, a D0L-system 
injective on S(L(G)) is not circular if and only if it is unboundedly repetitive [3], i.e., there exists v containing an unbounded 
letter such that vk ∈ S(L(G)) for all k ∈ N. Since this property can be checked by a simple algorithm [7], we can easily verify 
whether a given D0L-system injective on S(L(G)) is circular or not.

The notion of circularity is inspired by the notion of circular code:

Definition 5. A subset X of A∗ is called a code over alphabet A if for any word v ∈ X+ there are uniquely given a number 
n and words x1, x2, . . . , xn from X so that v = x1x2 . . . xn .

The set X is a circular code over A if for all n, m ≥ 1, x1, . . . , xn, y1, . . . , ym ∈ X , p ∈ A∗ and s ∈ A+ it holds that:

(sx2x3 · · · xn p = y1 y2 · · · ym and x1 = ps) =⇒ (n = m , p = ε and xi = yi ∀ i = 1, . . . ,n) .
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